Artificial neural network for adaptive PID controller

Author(s):  
Frantisek Kudlacak ◽  
Tibor Krajcovic
Author(s):  
G.M.K.B. Karunasena ◽  
H.D.N.S. Priyankara ◽  
B.G.D.A. Madhusank

This research investigates the acceptability of the Artificial Neural Networks (ANN) over the PID Controller for the control of the Magnetic Levitation System (MLS). In the field of advanced control systems, this system identifies as a feedback-controlled, single input- single output (SISO) system. This SISO system used a PID controller for vertical trajectory controlling of a metal sphere in airspace by using an electromagnetic force that directed to upward. The vertical position of the metal sphere controlled according to the applied magnetic force generated by a powerful electromagnet and the electromagnetic force controlled by varying the supply voltage. To control this nonlinear system, we develop a multilayer artificial neural network by using Matlab software and integrate that with the physical magnetic levitation model. According to specific initial conditions, the actual responses of the magnetic levitation system with artificial neural network compares the desire response of the metal sphere. The ability of control this nonlinear system by using neural networks validate by comparing results obtained by the PID controller and artificial neural network.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document