Improving Climb Performance Prediction in Air Traffic Control with Machine Learning and Full Flight Simulator Verification

Author(s):  
Matthias Poppe ◽  
Thomas Putz ◽  
Roland Scharff
2001 ◽  
Vol 10 (04) ◽  
pp. 613-637 ◽  
Author(s):  
M. M. WEST ◽  
T. L. McCLUSKEY

In this paper we describe a project (IMPRESS) in which machine learning (ML) tools were created and utilised for the validation of an Air Traffic Control domain theory written in first order logic. During the project, novel techniques were devised for the automated revision of general clause form theories using training examples. These techniques were combined in an algorithm which focused in on the parts of a theory which involve ordinal sorts, and applied geometrical revision operators to repair faulty component parts. While we illustrate the feasibility of applying ML to this area, we conclude that to be effective it must be focused to the application at hand, and used in mixed-initiative mode within a tools environment. The method is illustrated with experimental results obtained during the project.


2018 ◽  
Vol 95 ◽  
pp. 883-903 ◽  
Author(s):  
Christian Eduardo Verdonk Gallego ◽  
Víctor Fernando Gómez Comendador ◽  
Francisco Javier Sáez Nieto ◽  
Guillermo Orenga Imaz ◽  
Rosa María Arnaldo Valdés

2019 ◽  
Vol 9 (1) ◽  
pp. 2-11
Author(s):  
Marina Efthymiou ◽  
Frank Fichert ◽  
Olaf Lantzsch

Abstract. The paper examines the workload perceived by air traffic control officers (ATCOs) and pilots during continuous descent operations (CDOs), applying closed- and open-path procedures. CDOs reduce fuel consumption and noise emissions. Therefore, they are supported by airports as well as airlines. However, their use often depends on pilots asking for CDOs and controllers giving approval and directions. An adapted NASA Total Load Index (TLX) was used to measure the workload perception of ATCOs and pilots when applying CDOs at selected European airports. The main finding is that ATCOs’ workload increased when giving both closed- and open-path CDOs, which may have a negative impact on their willingness to apply CDOs. The main problem reported by pilots was insufficient distance-to-go information provided by ATCOs. The workload change is important when considering the use of CDOs.


2018 ◽  
Vol 8 (2) ◽  
pp. 100-111 ◽  
Author(s):  
Maik Friedrich ◽  
Christoph Möhlenbrink

Abstract. Owing to the different approaches for remote tower operation, a standardized set of indicators is needed to evaluate the technical implementations at a task performance level. One of the most influential factors for air traffic control is weather. This article describes the influence of weather metrics on remote tower operations and how to validate them against each other. Weather metrics are essential to the evaluation of different remote controller working positions. Therefore, weather metrics were identified as part of a validation at the Erfurt-Weimar Airport. Air traffic control officers observed weather events at the tower control working position and the remote control working position. The eight participating air traffic control officers answered time-synchronized questionnaires at both workplaces. The questionnaires addressed operationally relevant weather events in the aerodrome. The validation experiment targeted the air traffic control officer’s ability to categorize and judge the same weather event at different workplaces. The results show the potential of standardized indicators for the evaluation of performance and the importance of weather metrics in relation to other evaluation metrics.


Sign in / Sign up

Export Citation Format

Share Document