vertical profiles
Recently Published Documents


TOTAL DOCUMENTS

1384
(FIVE YEARS 310)

H-INDEX

65
(FIVE YEARS 8)

Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 94
Author(s):  
Christina-Anna Papanikolaou ◽  
Alexandros Papayannis ◽  
Maria Mylonaki ◽  
Romanos Foskinis ◽  
Panagiotis Kokkalis ◽  
...  

Vertical profiling of aerosol particles was performed during the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) winter campaign (10 January 2020–7 February 2020) over the city of Ioannina, Greece (39.65° N, 20.85° E, 500 m a.s.l.). The middle-sized city of Ioannina suffers from wintertime air pollution episodes due to biomass burning (BB) domestic heating activities. The lidar technique was applied during the PANACEA winter campaign on Ioannina city, to fill the gap of knowledge of the spatio-temporal evolution of the vertical mixing of the particles occurring during these winter-time air pollution episodes. During this campaign the mobile single-wavelength (532 nm) depolarization Aerosol lIdAr System (AIAS) was used to measure the spatio-temporal evolution of the aerosols’ vertical profiles within the Planetary Boundary Layer (PBL) and the lower free troposphere (LFT; up to 4 km height a.s.l.). AIAS performed almost continuous lidar measurements from morning to late evening hours (typically from 07:00 to 19:00 UTC), under cloud-free conditions, to provide the vertical profiles of the aerosol backscatter coefficient (baer) and the particle linear depolarization ratio (PLDR), both at 532 nm. In this study we emphasized on the vertical profiling of very fresh (~hours) biomass burning (BB) particles originating from local domestic heating activities in the area. In total, 33 out of 34 aerosol layers in the lower free troposphere were characterized as fresh biomass burning ones of local origin, showing a mean particle linear depolarization value of 0.04 ± 0.02 with a range of 0.01 to 0.09 (532 nm) in a height region 1.21–2.23 km a.s.l. To corroborate our findings, we used in situ data, particulate matter (PM) concentrations (PM2.5) from a particulate sensor located close to our station, and the total black carbon (BC) concentrations along with the respective contribution of the fossil fuel (BCff) and biomass/wood burning (BCwb) from the Aethalometer. The PM2.5 mass concentrations ranged from 5.6 to 175.7 μg/m3, while the wood burning emissions from residential heating were increasing during the evening hours, with decreasing temperatures. The BCwb concentrations ranged from 0.5 to 17.5 μg/m3, with an extremely high mean contribution of BCwb equal to 85.4%, which in some cases during night-time reached up to 100% during the studied period.


2022 ◽  
Author(s):  
Haibo Wang ◽  
Ting Yang ◽  
Zifa Wang ◽  
Jianjun Li ◽  
Wenxuan Chai ◽  
...  

Abstract. Aerosol vertical stratification information is important for global climate and planetary boundary layer (PBL) stability, and no single method can obtain spatiotemporally continuous vertical profiles. This paper develops an online data assimilation (DA) framework for the Eulerian atmospheric chemistry-transport model (CTM) Nested Air Quality Prediction Model System (NAQPMS) with the Parallel Data Assimilation Framework (PDAF) as the NAQPMS-PDAF for the first time. Online coupling occurs via a memory-based approach with two-level parallelization, and the arrangement of state vectors during the filter is specifically designed. Scaling tests provide evidence that the NAQPMS-PDAF can make efficient use of parallel computational resources for up to 2.5 k processors with weak scaling efficiency up to 0.7. One-month-long aerosol extinction coefficient profiles measured by the ground-based lidar and the concurrent hourly surface PM2.5 are solely and simultaneously assimilated to investigate the performance and application of the DA system. The hourly analysis and subsequent one-hour simulation are validated through lidar and surface PM2.5 measurements assimilated and not assimilated. The results show that lidar DA can significantly improve the underestimation of aerosol loading, especially at a height of approximately 400 m in the free-running (FR) experiment, with the BIAS changing from −0.20 (−0.14) 1/km to −0.02 (−0.01) 1/km and correlation coefficients increasing from 0.33 (0.28) to 0.91 (0.53) averaged over sites with measurements assimilated (not assimilated). Compared with the FR experiment, simultaneously assimilating PM2.5 and lidar can have a more consistent pattern of aerosol vertical profiles with a combination of surface PM2.5 and lidar, independent extinction coefficients from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET). Lidar DA has a larger temporal impact than that in PM2.5 DA but has deficiencies in subsequent quantification on the surface PM2.5. The proposed NAQPMS-PDAF has great potential for further research on the impact of aerosol vertical distribution.


2022 ◽  
Vol 9 ◽  
Author(s):  
Zhaoxin Cai ◽  
Zhanqing Li ◽  
Peiren Li ◽  
Junxia Li ◽  
Hongping Sun ◽  
...  

Based on aircraft measurements of aerosols and continental cumulus clouds made over the Loess Plateau of China (Xinzhou, Shanxi Province) on 30 July 2020, this study focuses on the vertical profiles of microphysical properties of aerosols and cumulus clouds, and use them to study aerosol-cloud interactions. During the study period, the boundary layer was stable with a height ∼1,500 m above sea level. Aerosols in the boundary layer mainly came from local emissions, while aerosols above this layer were mostly dust aerosols transported over long distances. Vertical profiles of aerosols and cloud condensation nuclei were obtained, and aerosol activation ratios at different supersaturation (SS) levels ranged from 0.16 to 0.32 at 0.2% SS and 0.70 to 0.85 at 0.8% SS. A thick cumulus cloud in the development stage was observed from the bottom to the top with the horizontal dimension of 10 km by 7 km, the cloud-base height of 2,450 m (15.8°C), and the cloud-top height of 5,400 m (−3°C). The maximum updraft velocity near the cloud top was 13.45 m s−1, and the maximum downdraft velocity occuring in the upper-middle part of the cloud was 4.44 ms−1. The temperature inside the cloud was higher than the outside, with their difference being positively correlated with the cloud water content. The temperature lapse rate inside the cloud was about −6.5°C km−1. The liquid water content and droplet effective radius (Re) increased with increasing height. The cloud droplet number concentration (Nc) increased first then decreased, peaking in the middle and lower part of the cloud, the average values of Nc and Re were 767.9 cm−3 and 5.17 μm, respectively. The cloud droplet spectrum had a multi-peak distribution, with the first appearing at ∼4.5 μm. SS in the cloud first increased then decreased with height. The maximum SS is ∼0.7% appearing at ∼3,800 m. The conversion rate of intra-cloud aerosols to cloud droplets was between 0.2 and 0.54, with the ratio increasing gradually with increasing height. The cloud droplet spectral dispersion and Nc were positively correlated. The aerosol indirect effect (AIE) was estimated to be 0.245 and 0.16, based on Nc and Re, respectively. The cloud droplet dispersion mainly attenuated the AIE, up to ∼34.7%.


2022 ◽  
Vol 14 (1) ◽  
pp. 5-18
Author(s):  
Lore T. Verryckt ◽  
Sara Vicca ◽  
Leandro Van Langenhove ◽  
Clément Stahl ◽  
Dolores Asensio ◽  
...  

Abstract. Terrestrial biosphere models typically use the biochemical model of Farquhar, von Caemmerer, and Berry (1980) to simulate photosynthesis, which requires accurate values of photosynthetic capacity of different biomes. However, data on tropical forests are sparse and highly variable due to the high species diversity, and it is still highly uncertain how these tropical forests respond to nutrient limitation in terms of C uptake. Tropical forests often grow on soils low in phosphorus (P) and are, in general, assumed to be P rather than nitrogen (N) limited. However, the relevance of P as a control of photosynthetic capacity is still debated. Here, we provide a comprehensive dataset of vertical profiles of photosynthetic capacity and important leaf traits, including leaf N and P concentrations, from two 3-year, large-scale nutrient addition experiments conducted in two tropical rainforests in French Guiana. These data present a unique source of information to further improve model representations of the roles of N, P, and other leaf nutrients in photosynthesis in tropical forests. To further facilitate the use of our data in syntheses and model studies, we provide an elaborate list of ancillary data, including important soil properties and nutrients, along with the leaf data. As environmental drivers are key to improve our understanding of carbon (C) and nutrient cycle interactions, this comprehensive dataset will aid to further enhance our understanding of how nutrient availability interacts with C uptake in tropical forests. The data are available at https://doi.org/10.5281/zenodo.5638236 (Verryckt, 2021).


2021 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Qiaojun Liu ◽  
Andrew Yuksun Cheng ◽  
Jianhua Zhu ◽  
Sauwa Chang ◽  
Kinseng Tam

Vertical profiles of particulates were measured in Macao by using a 355 nm Mie scattering lidar during a dust event. A high energy pulse laser was employed as the light source to detect the extinction coefficient in the atmosphere. The extinction profiles showed layers of high aerosol concentrations in good agreement with both back trajectory analysis and ground-based pollution measurements in Macao, which indicate that this lidar is very useful for monitoring extinction profiles during extreme high aerosol loading and low visibility atmospheric conditions when most low energy lidar system is inefficient. The results evidenced that correlations between PM2.5 and TSP varied with the intensity of dust storm and the PM2.5/PM10 ratio was small during dust episode, which indicated that aerosols were dominated by large particles. Furthermore, results of the dust event showed high aerosol concentrations at altitudes where the wind carried the dusty aerosols from northern China, covering Shanghai and the Taiwan Channel, to the Pearl River Delta Region. This research improved the understanding of the dust properties in Macao.


2021 ◽  
Vol 8 ◽  
Author(s):  
Elin Almroth-Rosell ◽  
Iréne Wåhlström ◽  
Martin Hansson ◽  
Germo Väli ◽  
Kari Eilola ◽  
...  

Dissolved oxygen in the sea is essential for marine fauna and biogeochemical processes. Decline in the sea water oxygen concentration is considered to be an effect of eutrophication, also exacerbated by climate change. The Baltic Sea is one of the most eutrophic seas in the world and is located in northern Europe. It is a vulnerable, brackish, semi-enclosed sea, suffering from high pressures from human activity. This leads to increased hypoxic and anoxic areas, which can be used as a measure of the environmental state. In the present study the extent of anoxic (O2 < 0 ml l–1) and hypoxic (O2 < 2 ml l–1) areas were estimated for the autumns in 1960–2019 using vertical profiles of observed oxygen concentrations in the Baltic proper and four sub-areas of the Baltic proper: the Bornholm Basin, the western, northern and eastern Gotland basins. From vertical profiles of observed salinity, the annual average of the halocline depths in the four sub-basins were estimated. The results imply regime shifts toward increased anoxic area extents in the Gotland basins around the turn of the 20th century. In autumn 2018, the extent of anoxic bottom areas in the Baltic Sea was record high since the start of the data series. During the later part of the studied period the depths of the halocline coincide with the depth of the hypoxia in the Gotland basins. This implies that in these basins a worst-case scenario for the extent of hypoxic areas seems to be reached.


2021 ◽  
Author(s):  
Till Fohrmann ◽  
Andreas Hense ◽  
Petra Friederichs

<p>The research on heat waves is strongly motivated by their impacts on human<br />life and the economy. Consequently, less research has been done on the<br />state of the lower atmosphere as a whole during these extreme events,<br />although it may play a role in the formation and persistence of heat<br />waves. Miralles et al. (2014) show that different factors must come<br />together to produce extremes such as the pronounced heat waves<br />in the year 2003 in France and 2010 in Russia. One interesting phenomenon<br />in this context is the emergence of an unusually deep boundary layer. The aim<br />of this work is to analyse whether this feature is a common trait of European<br />heat waves in general. To this end, we systematically investigate the vertical<br />structure and evolution of the lower atmosphere during heat waves in the<br />time period from 2014 to 2018. COSMO-REA6 data is used to find heatwaves<br />and provides vertical profiles of the atmosphere which we also compare<br />to radio sonde measurements. The results of our work could possibly be<br />used to improve the discriminability of different severity levels of heat waves or to<br />formulate a heat wave measure that is not based solely on surface variables.</p>


2021 ◽  
Vol 19 ◽  
pp. 185-193
Author(s):  
Christoph Jacobi ◽  
Friederike Lilienthal ◽  
Dmitry Korotyshkin ◽  
Evgeny Merzlyakov ◽  
Gunter Stober

Abstract. Observations of upper mesosphere/lower thermosphere (MLT) wind have been performed at Collm (51.3∘ N, 13.0∘ E) and Kazan (56∘ N, 49∘ E), using two SKiYMET all-sky meteor radars with similar configuration. Daily vertical profiles of mean winds and tidal amplitudes have been constructed from hourly horizontal winds. We analyse the response of mean winds and tidal amplitudes to geomagnetic disturbances. To this end, we compare winds and amplitudes for very quiet (Ap ≤ 5) and unsettled/disturbed (Ap ≥ 20) geomagnetic conditions. Zonal winds in both the mesosphere and lower thermosphere are weaker during disturbed conditions for both summer and winter. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. Tendencies for geomagnetic effects on mean winds over Collm and Kazan qualitatively agree during most of the year. For the diurnal tide, amplitudes in summer are smaller in the mesosphere and greater in the lower thermosphere, but no clear tendency is seen for winter. Semidiurnal tidal amplitudes increase during geomagnetic active days in summer and winter. Terdiurnal amplitudes are slightly reduced in the mesosphere during disturbed days, but no clear effect is visible for the lower thermosphere. Overall, while there is a noticeable effect of geomagnetic variability on the mean wind, the effect on tidal amplitudes, except for the semidiurnal tide, is relatively small and partly different over Collm and Kazan.


Sign in / Sign up

Export Citation Format

Share Document