Simple calculation method of the magnetic field from double-circuit twisted three-phase cables as a tool for fault detection

Author(s):  
G. Mazzanti ◽  
M. Landini ◽  
E. Kandia ◽  
L. Sandrolini
2015 ◽  
Vol 0 (4) ◽  
pp. 56-61 ◽  
Author(s):  
V. Yu. Rozov ◽  
A. A. Kvytsynskyi ◽  
P. N. Dobrodeyev ◽  
V. S. Grinchenko ◽  
A. V. Erisov ◽  
...  

Author(s):  
Carlos Rinaldi ◽  
Xiaowei He ◽  
Adam Rosenthal ◽  
Thomas Franklin ◽  
Cory Lorenz ◽  
...  

The rheology and behavior of magnetic fluids in the presence of time-varying magnetic fields is illustrated through three sets of experiments. The first involves measurements of ferrofluid torque on a cylindrical spindle under applied uniform rotating magnetic fields. We measure the torque required to restrain a stationary cylindrical test wall in contact with aqueous ferrofluids subjected to the rotating uniform magnetic field generated by a three-phase AC 2-pole motor stator winding. The torque is found to scale linearly with volume, and to be a function of the applied magnetic field amplitude, frequency and direction of rotation. Measurements show that for ferrofluid entirely inside the cylindrical test wall the torque points in the same direction as the magnetic field rotation pseudovector, whereas for ferrofluid entirely outside the cylindrical wall the torque points in the direction opposite to the field rotation pseudovector. The second set of experiments explores the formation of ordered ferrofluid structures in the gap of a Hele-Shaw cell subjected to simultaneous vertical DC and in-plane horizontal rotating magnetic fields. Finally, the third set of experiments illustrates the effect of applied DC fields on the shape of ferrofluid jets and sheets.


2018 ◽  
Vol 19 ◽  
pp. 01013
Author(s):  
Krzysztof Król ◽  
Krzysztof Budnik ◽  
Piotr Jarek

The paper presents a calculation method of the magnetic field under an overhead power line taking into account conductor sag, which is described by the catenary curve. The calculations take into account the variability of the charge distribution along the conductor and wire sag for the eclectic field, while the calculation of intensity of the magnetic field take into account the impact of induced currents in the wires of lightning. The simulation results were compared with results measurements.


2019 ◽  
Vol 28 ◽  
pp. 01007
Author(s):  
Dariusz Kusiak ◽  
Tomasz Szczegielniak ◽  
Zygmunt Piątek

The article shows the total magnetic field distribution in two outer conductors of the flat, three-phase single-pole shielded, high-current busduct is asymmetric. The phase currents in the shielded conductors decide about the magnetic field of such a high-current busduct. The components of this field reflect the magnetic field of the reverse reaction fields of the eddy currents induced in the conductors of the adjacent phases as the results of the proximity effect and the skin effect. The field distribution is shown in the outer area of the outer phases as the function of the parameters reflecting the current frequency, the conductivity, and the transverse dimensions of the tubular conductors.


Sign in / Sign up

Export Citation Format

Share Document