magnetic field intensity
Recently Published Documents


TOTAL DOCUMENTS

382
(FIVE YEARS 95)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
S. Hosseinzadeh ◽  
Kh. Hosseinzadeh ◽  
A. Hasibi ◽  
D.D. Ganji

In this paper, the flow of non-Newtonian blood fluid with nanoparticles inside a vessel with a porous wall in presence of a magnetic field have been investigated. This study aimed to investigate various parameters such as magnetic field and porosity on velocity, temperature, and concentration profiles. In this research, three different models (Vogel, Reynolds and Constant) for viscosity have been used as an innovation. The governing equations are solved by Akbari-Ganji's Method (AGM) analytical method and the Finite Element Method (FEM) is used to better represent the phenomena in the vessel. The results show that increasing the Gr number, porosity and negative pressure increase the blood velocity and increasing the magnetic field intensity decrease the blood velocity.


Author(s):  
Haotian Fan ◽  
Yongjie Ding ◽  
Chunjin Mo ◽  
Liqiu Wei ◽  
Hong Li ◽  
...  

Abstract In this study, the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations. The results show that the channel with a length of 22 mm has the advantage of comprehensive discharge performance. At this time, the magnetic field intensity at the anode surface is 10% of the peak magnetic field intensity. Further analysis shows that the high-gas-density zone moves outward due to the shortening of the channel length, which optimizes the matching between the gas flow field and the magnetic field, and thus increases the ionization rate. The outward movement of the main ionization zone also reduces the ion loss on the wall surface. Thus, the propellant utilization efficiency can reach a maximum of 96.8%. Moreover, the plasma potential in the main ionization zone will decrease with the shortening of the channel. The excessively short channel will greatly reduce the voltage utilization efficiency. The thrust is reduced to a minimum of 46.1 mN. Meanwhile, because the anode surface is excessively close to the main ionization zone, the discharge reliability is also difficult to guarantee. It was proved that the performance of Hall thrusters can be optimized by shortening the discharge channel appropriately, and the specific design scheme of short channel of HEP-1350PM was defined, which serves as a reference for the optimization design of Hall thruster with large height-radius ratio. The short-channel design also helps to reduce the thruster axial dimension, further consolidating the advantages of lightweight and large thrust-to-weight ratio of the Hall thruster with large height-radius ratio.


2021 ◽  
Author(s):  
Ian Moffat ◽  
Lynley Wallis ◽  
Mark Hounslow ◽  
Katrina Niland ◽  
Kate Domett ◽  
...  

Geophysical techniques have been widely employed for the noninvasive location of burial sites in archaeological and forensic investigations. This approach has met with varying degrees of success, depending on factors such as equipment choice, survey methodology, burial type, and geological setting. This paper reports the results of a multitechnique geophysical survey carried out immediately prior to the salvage excavation of two Indigenous burials from an eolian dune in coastal South Australia. Ground-penetrating radar was not successful in defining the location of the burials owing to the disturbed nature of the local stratigraphy. Magnetic field intensity and apparent magnetic susceptibility surveys identified discrete anomalies that coincided with the location of skeletal material revealed during excavation, which we hypothesize to be due to burning or ochre use during funerary practices. Despite the spatial association of these features, subsequent laboratory analyses of the mineralogy and magnetic properties of sediments collected from the site failed to find a definite cause of the anomalies. Nevertheless, the association between them and the primary interment locations has implications for archaeological surveys carried out in the Australian coastal zone, as it highlights the potential of magnetic field intensity and apparent magnetic susceptibility geophysical techniques undertaken with a more refined survey methodology to afford a noninvasive, culturally appropriate means through which to detect Indigenous burials. This approach may prove particularly useful in areas with disturbed stratigraphy where ground-penetrating radar is less effective.


2021 ◽  
Vol 72 (6) ◽  
pp. 419-422
Author(s):  
Karol Hilko ◽  
Vladimír Jančárik ◽  
Filip Kafka

Abstract The work is focused on the refinement of the determination of the magnetic field intensity in a Charpy-shaped steel sample. When measuring on an open sample, the intensity of the magnetic field cannot be determined directly from the current by the magnetizing winding. The distribution of the magnetic field around the sample was determined by numerical simulation, the dependence of its intensity on the distance from the sample surface is fitted with sufficient accuracy by a polynomial of the 3rd degree. A system of sensors sensing the distribution of the field at selected points above the sample was designed; by extrapolation using said fitting function, the intensity of the magnetic field on the surface of the examined sample is determined.


2021 ◽  
Vol 2094 (4) ◽  
pp. 042076
Author(s):  
V Yu Pivovarov ◽  
I R Kuzeyev

Abstract Contemporary achievements of the physics of surfaces allow to define dramatic differences between the surface layers and the underneath part of the same material. Even though there is a wide range of test methods and scientific findings, so far all the peculiarities of the surface phenomena have not been figured out. The article considers a hypothesis of the surface layer fractal structure. The hypothesis is based on the fact that the transition from a 3D plane to a 2D plane happens through a number of intermediary structures (transition or small-fraction layer). In order to check this hypothesis, we carried out an experiment aimed at studying the intensity of the magnetic field of a ferromagnetic specimen with the specimen getting thinner. The idea of the experiment was in the assumption that if the specimen has a certain thickness the surface layers will become comparable with the underneath material and this will influence the way the magnetic field intensity changes. The conducted measurements allowed to build a correlation between the magnetic field intensity components and the specimen thickness. The measurements showed that the thinner the specimen is, the ‘closer’ the correlation is. These findings display how the small fraction layer reacts to the change of the underneath material. This confirms it is possible to obtain information about the state of the structural material underneath by measuring the surface properties.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6613
Author(s):  
Sebastian Ley ◽  
Jürgen Sachs ◽  
Bernd Faenger ◽  
Ingrid Hilger ◽  
Marko Helbig

Magnetic nanoparticles have been investigated for microwave imaging over the last decade. The use of functionalized magnetic nanoparticles, which are able to accumulate selectively within tumorous tissue, can increase the diagnostic reliability. This paper deals with the detecting and imaging of magnetic nanoparticles by means of ultra-wideband microwave sensing via pseudo-noise technology. The investigations were based on phantom measurements. In the first experiment, we analyzed the detectability of magnetic nanoparticles depending on the magnetic field intensity of the polarizing magnetic field, as well as the viscosity of the target and the surrounding medium in which the particles were embedded, respectively. The results show a nonlinear behavior of the magnetic nanoparticle response depending on the magnetic field intensity for magnetic nanoparticles diluted in distilled water and for magnetic nanoparticles embedded in a solid medium. Furthermore, the maximum amplitude of the magnetic nanoparticles responses varies for the different surrounding materials of the magnetic nanoparticles. In the second experiment, we investigated the influence of the target position on the three-dimensional imaging of the magnetic nanoparticles in a realistic measurement setup for breast cancer imaging. The results show that the magnetic nanoparticles can be detected successfully. However, the intensity of the particles in the image depends on its position due to the path-dependent attenuation, the inhomogeneous microwave illumination of the breast, and the inhomogeneity of the magnetic field. Regarding the last point, we present an approach to compensate for the inhomogeneity of the magnetic field by computing a position-dependent correction factor based on the measured magnetic field intensity and the magnetic susceptibility of the magnetic particles. Moreover, the results indicate an influence of the polarizing magnetic field on the measured ultra-wideband signals even without magnetic nanoparticles. Such a disturbing influence of the polarizing magnetic field on the measurements should be reduced for a robust magnetic nanoparticles detection. Therefore, we analyzed the two-state (ON/OFF) and the sinusoidal modulation of the external magnetic field concerning the detectability of the magnetic nanoparticles with respect to these spurious effects, as well as their practical application.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anna Sturevik-Storm ◽  
Minjie Zheng ◽  
Ala Aldahan ◽  
Göran Possnert ◽  
Raimund Muscheler

Understanding the transport and deposition of the cosmogenic isotope 10Be is vital for the application of the isotope data to infer past changes of solar activity, to reconstruct past Earth’s magnetic field intensity and climate change. Here, we use data of the cosmogenic isotope 10Be from the Greenland ice cores, namely the NEEM and GRIP ice cores, to identify factors controlling its distribution. After removing the effects of the geomagnetic field on the cosmogenic radionuclide production rate, the results expose imprints of the 20–22 ka precession cycle on the Greenland 10Be records of the last glacial period. This finding can further improve the understanding of 10Be variability in ice sheets and has the prospect of providing better reconstructions of geomagnetic and solar activity based on cosmogenic radionuclide records.


Sign in / Sign up

Export Citation Format

Share Document