AES S-box construction using different irreducible polynomial and constant 8-bit vector

Author(s):  
Alamsyah ◽  
Agus Bejo ◽  
Teguh Bharata Adji
1998 ◽  
Author(s):  
Clark W. Barrett ◽  
David L. Dill ◽  
Jeremy R. Levitt

Author(s):  
Mohammad Mehdi Pourhashem Kallehbasti ◽  
Matteo Giovanni Rossi ◽  
Luciano Baresi
Keyword(s):  

2002 ◽  
Vol 166 ◽  
pp. 183-207 ◽  
Author(s):  
Yuki Sano

AbstractWe characterize numbers having purely periodic β-expansions where β is a Pisot number satisfying a certain irreducible polynomial. The main tool of the proof is to construct a natural extension on a d-dimensional domain with a fractal boundary.


2019 ◽  
Vol 27 (2) ◽  
pp. 133-137
Author(s):  
Christoph Schwarzweller

Summary This is the second part of a four-article series containing a Mizar [2], [1] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [5], [3], [4]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ : F → F [X]/<p> and show that the translated polynomial ϕ (p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in this second part the field (E \ ϕF )∪F for a given monomorphism ϕ : F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in the third part, this condition is not automatically true for arbitray fields F : With the exception of 𝕑2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of 𝕑n, 𝕈 and 𝕉 we have 𝕑n ∩ 𝕑n[X] = ∅, 𝕈 ∩ 𝕈 [X] = ∅ and 𝕉 ∩ 𝕉 [X] = ∅, respectively. In the fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ : F → F [X]/<p>. Together with the first part this gives - for fields F with F ∩ F [X] = ∅ - a field extension E of F in which p ∈ F [X]\F has a root.


Sign in / Sign up

Export Citation Format

Share Document