Computer-oriented investigation of the synthesis problems of radiating systems according to the prescribed amplitude directivity pattern

Author(s):  
M.I. Andriychuk
Keyword(s):  
2020 ◽  
Vol 19 (3-5) ◽  
pp. 191-206
Author(s):  
Trae L Jennette ◽  
Krish K Ahuja

This paper deals with the topic of upper surface blowing noise. Using a model-scale rectangular nozzle of an aspect ratio of 10 and a sharp trailing edge, detailed noise contours were acquired with and without a subsonic jet blowing over a flat surface to determine the noise source location as a function of frequency. Additionally, velocity scaling of the upper surface blowing noise was carried out. It was found that the upper surface blowing increases the noise significantly. This is a result of both the trailing edge noise and turbulence downstream of the trailing edge, referred to as wake noise in the paper. It was found that low-frequency noise with a peak Strouhal number of 0.02 originates from the trailing edge whereas the high-frequency noise with the peak in the vicinity of Strouhal number of 0.2 originates near the nozzle exit. Low frequency (low Strouhal number) follows a velocity scaling corresponding to a dipole source where as the high Strouhal numbers as quadrupole sources. The culmination of these two effects is a cardioid-shaped directivity pattern. On the shielded side, the most dominant noise sources were at the trailing edge and in the near wake. The trailing edge mounting geometry also created anomalous acoustic diffraction indicating that not only is the geometry of the edge itself important, but also all geometry near the trailing edge.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Renxin Wang ◽  
Wei Shen ◽  
Wenjun Zhang ◽  
Jinlong Song ◽  
Nansong Li ◽  
...  

AbstractDetecting low-frequency underwater acoustic signals can be a challenge for marine applications. Inspired by the notably strong response of the auditory organs of pectis jellyfish to ultralow frequencies, a kind of otolith-inspired vector hydrophone (OVH) is developed, enabled by hollow buoyant spheres atop cilia. Full parametric analysis is performed to optimize the cilium structure in order to balance the resonance frequency and sensitivity. After the structural parameters of the OVH are determined, the stress distributions of various vector hydrophones are simulated and analyzed. The shock resistance of the OVH is also investigated. Finally, the OVH is fabricated and calibrated. The receiving sensitivity of the OVH is measured to be as high as −202.1 dB@100 Hz (0 dB@1 V/μPa), and the average equivalent pressure sensitivity over the frequency range of interest of the OVH reaches −173.8 dB when the frequency ranges from 20 to 200 Hz. The 3 dB polar width of the directivity pattern for the OVH is measured as 87°. Moreover, the OVH is demonstrated to operate under 10 MPa hydrostatic pressure. These results show that the OVH is promising in low-frequency underwater acoustic detection.


Author(s):  
Jamal Assaad ◽  
Christian Bruneel ◽  
Jean-Michel Rouvaen ◽  
Régis Bossut

Abstract The finite element method is widely used for the modeling of piezoelectric transducers. With respect to the radiation loading, the fluid is meshed and terminated by an external nonreflecting surface. This reflecting surface can be made up with dipolar damping elements that absorb approximately the outgoing acoustic wave. In fact, with dipolar dampers the fluid mesh can be quite limited. This method can provides a direct computation of the near-field pressure inside the selected external boundary. This paper describes an original extrapolation method to compute far-field pressures from near-field pressures in the two-dimensional (2-D) case. In fact, using the 2-D Helmholtz equation and its solution obeying the Sommerfeld radiation condition, the far-field directivity pattern can be expressed in terms of the near-field directivity pattern. These developments are valid for any radiation problem in 2D. One test example is described which consists of a finite width planar source mounted in a rigid or a soft baffle. Experimental results concerning the far-field directivity pattern of lithium niobate bars (Y-cut) are also presented.


1967 ◽  
Vol 41 (6) ◽  
pp. 1590-1590
Author(s):  
John B. Crabtree ◽  
B. G. Watters
Keyword(s):  

2017 ◽  
Vol 826 ◽  
pp. 205-234 ◽  
Author(s):  
B. Lyu ◽  
M. Azarpeyvand

An analytical model is developed for the prediction of noise radiated by an aerofoil with leading-edge serration in a subsonic turbulent stream. The model makes use of Fourier expansion and Schwarzschild techniques in order to solve a set of coupled differential equations iteratively and express the far-field sound power spectral density in terms of the statistics of incoming turbulent upwash velocity. The model has shown that the primary noise-reduction mechanism is due to the destructive interference of the scattered pressure induced by the leading-edge serrations. It has also shown that in order to achieve significant sound reduction, the serration must satisfy two geometrical criteria related to the serration sharpness and hydrodynamic properties of the turbulence. A parametric study has been carried out and it is shown that serrations can reduce the overall sound pressure level at most radiation angles, particularly at small aft angles. The sound directivity results have also shown that the use of leading-edge serration does not significantly change the dipolar pattern of the far-field noise at low frequencies, but it changes the cardioid directivity pattern associated with radiation from straight-edge scattering at high frequencies to a tilted dipolar pattern.


2008 ◽  
Vol 123 (5) ◽  
pp. 3643-3643 ◽  
Author(s):  
Franz Zotter ◽  
Hannes Pomberger ◽  
Andrew Schmeder

Sign in / Sign up

Export Citation Format

Share Document