Massively parallel binary neural network inference for detecting ships in FPGA systems on the edge

Author(s):  
Tadej Murovic ◽  
Andrej Trost
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2600
Author(s):  
Yiyang Zhao ◽  
Yongjia Wang ◽  
Ruibo Wang ◽  
Yuan Rong ◽  
Xianyang Jiang

Since memristor was found, it has shown great application potential in neuromorphic computing. Currently, most neural networks based on memristors deploy the special analog characteristics of memristor. However, owing to the limitation of manufacturing process, non-ideal characteristics such as non-linearity, asymmetry, and inconsistent device periodicity appear frequently and definitely, therefore, it is a challenge to employ memristor in a massive way. On the contrary, a binary neural network (BNN) requires its weights to be either +1 or −1, which can be mapped by digital memristors with high technical maturity. Upon this, a highly robust BNN inference accelerator with binary sigmoid activation function is proposed. In the accelerator, the inputs of each network layer are either +1 or 0, which can facilitate feature encoding and reduce the peripheral circuit complexity of memristor hardware. The proposed two-column reference memristor structure together with current controlled voltage source (CCVS) circuit not only solves the problem of mapping positive and negative weights on memristor array, but also eliminates the sneak current effect under the minimum conductance status. Being compared to the traditional differential pair structure of BNN, the proposed two-column reference scheme can reduce both the number of memristors and the latency to refresh the memristor array by nearly 50%. The influence of non-ideal factors of memristor array such as memristor array yield, memristor conductance fluctuation, and reading noise on the accuracy of BNN is investigated in detail based on a newly memristor circuit model with non-ideal characteristics. The experimental results demonstrate that when the array yield α ≥ 5%, or the reading noise σ ≤ 0.25, a recognition accuracy greater than 97% on the MNIST data set is achieved.


2021 ◽  
pp. 100079
Author(s):  
Vincent Fortuin ◽  
Adrià Garriga-Alonso ◽  
Mark van der Wilk ◽  
Laurence Aitchison

2021 ◽  
Vol 11 (11) ◽  
pp. 5235
Author(s):  
Nikita Andriyanov

The article is devoted to the study of convolutional neural network inference in the task of image processing under the influence of visual attacks. Attacks of four different types were considered: simple, involving the addition of white Gaussian noise, impulse action on one pixel of an image, and attacks that change brightness values within a rectangular area. MNIST and Kaggle dogs vs. cats datasets were chosen. Recognition characteristics were obtained for the accuracy, depending on the number of images subjected to attacks and the types of attacks used in the training. The study was based on well-known convolutional neural network architectures used in pattern recognition tasks, such as VGG-16 and Inception_v3. The dependencies of the recognition accuracy on the parameters of visual attacks were obtained. Original methods were proposed to prevent visual attacks. Such methods are based on the selection of “incomprehensible” classes for the recognizer, and their subsequent correction based on neural network inference with reduced image sizes. As a result of applying these methods, gains in the accuracy metric by a factor of 1.3 were obtained after iteration by discarding incomprehensible images, and reducing the amount of uncertainty by 4–5% after iteration by applying the integration of the results of image analyses in reduced dimensions.


Sign in / Sign up

Export Citation Format

Share Document