Novel Non-cryptographic Hash Functions for Networking and Security Applications on FPGA

Author(s):  
Thomas Claesen ◽  
Arish Sateesan ◽  
Jo Vliegen ◽  
Nele Mentens
2016 ◽  
Vol 25 (04) ◽  
pp. 1650026 ◽  
Author(s):  
Fatma Kahri ◽  
Hassen Mestiri ◽  
Belgacem Bouallegue ◽  
Mohsen Machhout

Cryptographic hash functions are at the heart of many information security applications like message authentication codes (MACs), digital signatures and other forms of authentication. One of the methods to ensure information integrity is the use of hash functions, which generates a stream of bytes (hash) that must be unique. But most functions can no longer prevent malicious attacks and ensure that the information have just a hash. Because of the weakening of the widely used SHA-1 hash algorithm and concerns over the similarly-structured algorithms of the SHA-2 family, the US National Institute of Standards and Technology (NIST) has initiated the SHA-3 contest in order to select a suitable drop-in replacement. KECCAK hash function has been submitted to SHA-3 competition and it belongs to the final five candidate functions. In this paper, we present the implementation details of the hash function’s KECCAK algorithm, moreover, the proposed KECCAK design has been implemented on XILINX FPGAs. Its area, frequency, throughput and efficiency have been derived and compared and it is shown that the proposed design allows a trade-off between the maximum frequency and the area implementation.


2010 ◽  
Vol 23 (3) ◽  
pp. 357-366
Author(s):  
Miodrag Milic ◽  
Vojin Senk

In this paper we present results of uniform logical cryptanalysis method applied to cryptographic hash function CubeHash. During the last decade, some of the most popular cryptographic hash functions were broken. Therefore, in 2007, National Institute of Standards and Technology (NIST), announced an international competition for a new Hash Standard called SHA-3. Only 14 candidates passed first two selection rounds and CubeHash is one of them. A great effort is made in their analysis and comparison. Uniform logical cryptanalysis presents an interesting method for this purpose. Universal, adjustable to almost any cryptographic hash function, very fast and reliable, it presents a promising method in the world of cryptanalysis.


Author(s):  
Kannan Balasubramanian

Cryptographic Hash Functions are used to achieve a number of Security goals like Message Authentication, Message Integrity, and are also used to implement Digital Signatures (Non-repudiation), and Entity Authentication. This chapter discusses the construction of hash functions and the various attacks on the Hash functions. The Message Authentication Codes are similar to the Hash functions except that they require a key for producing the message digest or hash. Authenticated Encryption is a scheme that combines hashing and Encryption. The Various types of hash functions like one-way hash function, Collision Resistant hash function and Universal hash functions are also discussed in this chapter.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 296 ◽  
Author(s):  
Swathi Singh ◽  
Suguna R ◽  
Divya Satish ◽  
Ranjith Kumar MV

The paper gives an insight on cryptography within digital money used in electronic commerce. The combination of digital currencies with cryptography is named as cryptocurrencies or cryptocoins. Though this technique came into existence years ago, it is bound to have a great future due to its flexibility and very less or nil transaction costs. The concept of cryptocurrency is not new in digital world and is already gaining subtle importance in electronic commerce market. This technology can bring down various risks that may have occurred in usage of physical currencies. The transaction of cryptocurrencies are protected with strong cryptographic hash functions that ensure the safe sending and receiving of assets within the transaction chain or blockchain in a Peer-to-Peer network. The paper discusses the merits and demerits of this technology with a wide range of applications that use cryptocurrency.  


2006 ◽  
Vol 2 (1) ◽  
pp. 79-85 ◽  
Author(s):  
John Aycock ◽  
Rennie deGraaf ◽  
Michael Jacobson

Sign in / Sign up

Export Citation Format

Share Document