great effort
Recently Published Documents


TOTAL DOCUMENTS

607
(FIVE YEARS 308)

H-INDEX

20
(FIVE YEARS 9)

Author(s):  
Amina Unis ◽  
◽  
Amany Abdelbary ◽  

Gentamicin induced acute nephrotoxicity (GIAN) is considered as one of the important causes of acute renal failure. In recent years’ great effort has been focused on the introduction of herbal medicine as a novel therapeutic agent for prevention of GIAN. Hence, the current study was designed to investigate the effect of green coffee bean extract (GCBE) on GIAN in rats. Results of the present study showed that rat groups that received oral GCBE for 7 days after induction of GIAN (by a daily intraperitoneal injection of gentamicin for 7days), reported a significant improvement in renal functions tests when compared to the GIAN model groups. Moreover, there was significant amelioration in renal oxidative stress markers (renal malondialdehyde, renal superoxide dismutase) and renal histopathological changes in the GCBE-treated groups when compared to GIAN model group. These results indicate that GCBE has a potential role in ameliorating renal damage involved in GIAN.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Cunxiang Bo ◽  
Juan Zhang ◽  
Linlin Sai ◽  
Zhongjun Du ◽  
Gongchang Yu ◽  
...  

Abstract Background Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. Methods Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). Results In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. Conclusion Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis.


2022 ◽  
Author(s):  
Shalini Mathpal ◽  
Tushar Joshi ◽  
Priyanka Sharma ◽  
Veena Pande ◽  
Subhash Chandra

Abstract The COVID-19 is still pandemic due to emerging of the various variant of concern of SARS-CoV2. Hence it is devastating the world, causing significant economic as well as social chaos. This needs great effort to search and develop effective alternatives along with vaccination. Therefore to continue drug discovery endeavors, we used chalcone derivatives to find an effective drug candidate against SARS-CoV2. Chalcone is a common simple scaffold that exists in many diets as well as in traditional medicine. Natural as well as synthetic chalcones have shown numerous interesting biological activities and are also effective in fighting various diseases. Hence various computational methods were applied to find out potential inhibitors of 3CLPro using a library of 3000 compounds of chalcones. Firstly the screening by structure-based pharmacophore model yielded 84 hits that were subjected to molecular docking. The top 10 docked compounds were characterized for stability by using 100 nanoseconds (ns) molecular dynamic (MD) simulation approach. Further, the binding free energy calculation by MMPBSA showed that four compounds bind to 3CLPro enzyme with high affinity i.e., -87.962(KJ/mol), -66.125 (KJ/mol), -59.589(KJ/mol), and -66.728(KJ/mol) respectively. Since chalcone is a common simple scaffold that is present in many diets as well as in traditional medicine, we suggest that screened compounds may emerge as promising drug candidates for SARS-CoV-2. These compounds may be investigated in vitro to evaluate the efficacy againstSARS-CoV-2.


2022 ◽  
Vol 52 (7) ◽  
Author(s):  
João Leodato Nunes Maciel ◽  
Gustavo Bilíbio dos Santos ◽  
Carlos Augusto Pizolotto ◽  
Marcos Kovaleski ◽  
Alieze Nascimento da Silva ◽  
...  

ABSTRACT: The first report of wheat blast in the world was in Brazil, in 1986. Since then, a great effort has been made towards the development of wheat cultivars resistant to this disease, which is caused by the fungus Pyricularia oryzae Triticum (PoT). The objective of this research was to (i) evaluate the resistance of wheat genotypes to blast and (ii) verify the correlation between disease severity on wheat spikes and sporulation rate of PoT on spike rachises. Plants of 40 cultivars grown in pots, at the flowering stage (stage 65 on the Zadoks scale), were inoculated with a suspension of conidia of a PoT isolate representative of the main variant of the fungus reported in Brazil. Severity of blast on the spikes at 5 and 7 days after inoculation (dai) and the rate of sporulation of the fungus on the rachis (conidia per g of rachis) were evaluated. Eighty percent of the cultivars that were classified in the group with the lowest sporulation rate were also classified in the group with the highest resistance at 7 dai. However, the correlation coefficients of the analysis established between the cultivar severity at 5 and 7 dai averages and the PoT sporulation rate averages were not significant (r=0.2464 and r=0.2047, respectively). Results obtained represent the updated characterization to blast of wheat cultivars in Brazil and constitute an important exploratory framework for the evaluation of the reaction of wheat genotypes based on the sporulation rate of PoT on their tissues.


Author(s):  
Fabiola Colmenero Fonseca

Bringing children closer to the issues of culture and civic education in architecture and critical thinking is essential because only by knowing and enhancing their respective heritages is it possible to appreciate the present and build the future of cities with them and for them, where a city is a place of construction of collective knowledge that encompasses the challenges of sustainability and the objectives of the 2030 Agenda of the United Nations. From SUJ (Jesuit University System) we have a strong commitment to the protection and care of minors and vulnerable people. In recent years, a great effort has been made to move from a culture of protection and care to ensure access to culture to safe environments. The concept of Friendly Cities 8-80is taken up again, based on the premise: If we design the city for an 8-year-old and an 80-year-old, we will have a city that allows coexistence and harmony in a way that fosters equity, stimulates healthy lifestyles, and promotes sustainability for more diverse users. Good public space design including beauty, sustainability, and accessibility are keywords of the new Bauhaus, capable of astonishing, reflecting culture and the values of a community, influencing, or “forcing” people to engage with their daily environment to address the new global challenges of climate change, pollution, and resource scarcity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valentina Azzollini ◽  
Stefania Dalise ◽  
Carmelo Chisari

Long-term disability caused by stroke is largely due to an impairment of motor function. The functional consequences after stroke are caused by central nervous system adaptations and modifications, but also by the peripheral skeletal muscle changes. The nervous and muscular systems work together and are strictly dependent in their structure and function, through afferent and efferent communication pathways with a reciprocal “modulation.” Knowing how altered interaction between these two important systems can modify the intrinsic properties of muscle tissue is essential in finding the best rehabilitative therapeutic approach. Traditionally, the rehabilitation effort has been oriented toward the treatment of the central nervous system damage with a central approach, overlooking the muscle tissue. However, to ensure greater effectiveness of treatments, it should not be forgotten that muscle can also be a target in the rehabilitation process. The purpose of this review is to summarize the current knowledge about the skeletal muscle changes, directly or indirectly induced by stroke, focusing on the changes induced by the treatments most applied in stroke rehabilitation. The results of this review highlight changes in several muscular features, suggesting specific treatments based on biological knowledge; on the other hand, in standard rehabilitative practice, a realist muscle function evaluation is rarely carried out. We provide some recommendations to improve a comprehensive muscle investigation, a specific rehabilitation approach, and to draw research protocol to solve the remaining conflicting data. Even if a complete multilevel muscular evaluation requires a great effort by a multidisciplinary team to optimize motor recovery after stroke.


2021 ◽  
pp. 306-317
Author(s):  
Eric Landowski

Viral epidemics are processes in which temporality obviously constitutes an essential variable. But different time scales must be distinguished. To see the current pandemic as a singular event is but an illusion due to the “mesoscopic” timescale we are embracing. There is a microscopic scale — that of physiological processes —, a mesoscopic scale, which only allows to see the closest evidence, and a macroscopic scale, that of the ecological determinisms which explain the emergence of the disease in the history of the relationships between species. The article focuses on the mesoscopic level and highlights some semiotic specificities of today’s experience : a temporal suspension, the threat of pure, dramatic and final discontinuity, the behavior of a virus that appears to have “intentionality”, a strong intensity coupled with a long duration, a time of exception, drawn to a final end, and a victory which will only be achieved with great effort.


2021 ◽  
Vol 118 (51) ◽  
pp. e2112664118
Author(s):  
Metin Kayci ◽  
Jilin Fan ◽  
Onur Bakirman ◽  
Andreas Herrmann

In the past decade, a great effort has been devoted to develop new biosensor platforms for the detection of a wide range of analytes. Among the various approaches, magneto-DNA assay platforms have received extended interest for high sensitive and specific detection of targets with a simultaneous manipulation capacity. Here, using nitrogen-vacancy quantum centers in diamond as transducers for magnetic nanotags (MNTs), a hydrogel-based, multiplexed magneto-DNA assay is presented. Near–background-free sensing with diamond-based imaging combined with noninvasive control of chemically robust nanotags renders it a promising platform for applications in medical diagnostics, life science, and pharmaceutical drug research. To demonstrate its potential for practical applications, we employed the sensor platform in the sandwich DNA hybridization process and achieved a limit of detection in the attomolar range with single-base mismatch differentiation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Piotr Majewski ◽  
Anna Gutowska ◽  
David G. E. Smith ◽  
Tomasz Hauschild ◽  
Paulina Majewska ◽  
...  

Objectives: The growing incidence of multidrug-resistant (MDR) bacteria is an inexorable and fatal challenge in modern medicine. Colistin is a cationic polypeptide considered a “last-resort” antimicrobial for treating infections caused by MDR Gram-negative bacterial pathogens. Plasmid-borne mcr colistin resistance emerged recently, and could potentially lead to essentially untreatable infections, particularly in hospital and veterinary (livestock farming) settings. In this study, we sought to establish the molecular basis of colistin-resistance in six extraintestinal Escherichia coli strains.Methods: Molecular investigation of colistin-resistance was performed in six extraintestinal E. coli strains isolated from patients hospitalized in Medical University Hospital, Bialystok, Poland. Complete structures of bacterial chromosomes and plasmids were recovered with use of both short- and long-read sequencing technologies and Unicycler hybrid assembly. Moreover, an electrotransformation assay was performed in order to confirm IncX4 plasmid influence on colistin-resistance phenotype in clinical E. coli strains.Results: Here we report on the emergence of six mcr-1.1-producing extraintestinal E. coli isolates with a number of virulence factors. Mobile pEtN transferase-encoding gene, mcr-1.1, has been proved to be encoded within a type IV secretion system (T4SS)-containing 33.3 kbp IncX4 plasmid pMUB-MCR, next to the PAP2-like membrane-associated lipid phosphatase gene.Conclusion: IncX4 mcr-containing plasmids are reported as increasingly disseminated among E. coli isolates, making it an “epidemic” plasmid, responsible for (i) dissemination of colistin-resistance determinants between different E. coli clones, and (ii) circulation between environmental, industrial, and clinical settings. Great effort needs to be taken to avoid further dissemination of plasmid-mediated colistin resistance among clinically relevant Gram-negative bacterial pathogens.


Author(s):  
Mohammed Hussein ◽  
Wisam Alabbasi ◽  
Ahmad Alsadeh

Energy saving has become a critical issue and a great challenge in the past few decades, and a great effort as well is being made to reduce consumed energy. The Internet forms a major source for energy consumption. Therefore, in this work we propose an algorithm for energy saving in distributed backbone networks, the reduced energy consumption (RedCon) algorithm. In this paper, we introduce a new version for saving energy on the Internet by switching off underutilized links and switching on idle links when the network is overloaded in a distributed manner over the network nodes based on LSA messages and without any knowledge of the traffic matrix. Our algorithm is more accurate and outperforms other algorithms with its time checks and advanced learning algorithm.


Sign in / Sign up

Export Citation Format

Share Document