scholarly journals The algorithm of formation of a training set for an artificial neural network for image segmentation

Author(s):  
S. V. Belim ◽  
S. V. Larionov
Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1963 ◽  
Author(s):  
Zheng Fang ◽  
Renbin Wang ◽  
Mengyi Wang ◽  
Shuo Zhong ◽  
Liquan Ding ◽  
...  

Hyperspectral X-ray CT (HXCT) technology provides not only structural imaging but also the information of material components therein. The main purpose of this study is to investigate the effect of various reconstruction algorithms on reconstructed X-ray absorption spectra (XAS) of components shown in the CT image by means of HXCT. In this paper, taking 3D printing polymer as an example, seven kinds of commonly used polymers such as thermoplastic elastomer (TPE), carbon fiber reinforced polyamide (PA-CF), acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), ultraviolet photosensitive resin (UV9400), polyethylene terephthalate glycol (PETG), and polyvinyl alcohol (PVA) were selected as samples for hyperspectral CT reconstruction experiments. Seven kinds of 3D printing polymer and two interfering samples were divided into a training set and test sets. First, structural images of specimens were reconstructed by Filtered Back-Projection (FBP), Algebra Reconstruction Technique (ART) and Maximum-Likelihood Expectation-Maximization (ML-EM). Secondly, reconstructed XAS were extracted from the pixels of region of interest (ROI) compartmentalized in the images. Thirdly, the results of principal component analysis (PCA) demonstrated that the first four principal components contain the main features of reconstructed XAS, so we adopted Artificial Neural Network (ANN) trained by the reconstructed XAS expressed by the first four principal components in the training set to identify that the XAS of corresponding polymers exist in both of test sets from the training set. The result of ANN displays that FBP has the best performance of classification, whose ten-fold cross-validation accuracy reached 99%. It suggests that hyperspectral CT reconstruction is a promising way of getting image features and material features at the same time, which can be used in medical imaging and nondestructive testing.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Christos Fragopoulos ◽  
Abraham Pouliakis ◽  
Christos Meristoudis ◽  
Emmanouil Mastorakis ◽  
Niki Margari ◽  
...  

Objective. This study investigates the potential of an artificial intelligence (AI) methodology, the radial basis function (RBF) artificial neural network (ANN), in the evaluation of thyroid lesions. Study Design. The study was performed on 447 patients who had both cytological and histological evaluation in agreement. Cytological specimens were prepared using liquid-based cytology, and the histological result was based on subsequent surgical samples. Each specimen was digitized; on these images, nuclear morphology features were measured by the use of an image analysis system. The extracted measurements (41,324 nuclei) were separated into two sets: the training set that was used to create the RBF ANN and the test set that was used to evaluate the RBF performance. The system aimed to predict the histological status as benign or malignant. Results. The RBF ANN obtained in the training set has sensitivity 82.5%, specificity 94.6%, and overall accuracy 90.3%, while in the test set, these indices were 81.4%, 90.0%, and 86.9%, respectively. Algorithm was used to classify patients on the basis of the RBF ANN, the overall sensitivity was 95.0%, the specificity was 95.5%, and no statistically significant difference was observed. Conclusion. AI techniques and especially ANNs, only in the recent years, have been studied extensively. The proposed approach is promising to avoid misdiagnoses and assists the everyday practice of the cytopathology. The major drawback in this approach is the automation of a procedure to accurately detect and measure cell nuclei from the digitized images.


2013 ◽  
Vol 641-642 ◽  
pp. 460-463
Author(s):  
Yong Gang Liu ◽  
Xin Tian ◽  
Yue Qiang Jiang ◽  
Gong Bing Li ◽  
Yi Zhou Li

In this study, a three-layer artificial neural network(ANN) model was constructed to predict the detonation pressure of aluminized explosive. Elemental composition and loading density were employed as input descriptors and detonation pressure was used as output. The dataset of 41 aluminized explosives was randomly divided into a training set (30) and a prediction set (11). After optimized by adjusting various parameters, the optimal condition of the neural network was obtained. Simulated with the final optimum neural network [6–9–1], calculated detonation pressures show good agreement with experimental results. It is shown here that ANN is able to produce accurate predictions of the detonation pressure of aluminized explosive.


2013 ◽  
Vol 790 ◽  
pp. 673-676
Author(s):  
Yue Qiang Jiang ◽  
Yong Gang Liu ◽  
Xin Tian ◽  
Gong Bing Li

In this study, a three-layer artificial neural network (ANN) model was constructed to predict the detonation velocity of aluminized explosive. Elemental composition and loading density were employed as input descriptors and detonation velocity was used as output. The dataset of 61 aluminized explosives was randomly divided into a training set (49) and a prediction set (12). After optimized by adjusting various parameters, the optimal condition of the neural network was obtained. Simulated with the final optimum neural network [812, calculated detonation velocity show good agreement with experimental results. It is shown that ANN is able to produce accurate predictions of the detonation velocity of aluminized explosive.


Sign in / Sign up

Export Citation Format

Share Document