Detonation Velocity
Recently Published Documents





2021 ◽  
Vol 11 (5) ◽  
pp. 157-164
Dr. Christ Barriga P. ◽  
Ing. Mabel Calderón V.

The gasifiable emulsion is a technological and productive response to the need to reduce operating costs in the mining project, among the improvements with respect to ANFO are a higher detonation velocity (VOD), better fragmentation and reduction of nitrous fumes. In the test mining operation, a commercial explosive mixture called "Q "73 (70% emulsion and 30% ANFO) is used, where the ANFO is composed of 97% ammonium nitrate and 3% diesel, and the explosive mixture "Q "82 (80% emulsion and 20% ANFO) is also used, 7 blasting processes were carried out with a diameter of 12.25 in. in a waste area, the most characteristic rocks found in the blasting project in the copper mine in southern Peru are Toba Cristal (TC), Andesite Basaltic Propylitic (BA-PRO), Andesite Basaltic Argillic (BA-ARG). The results obtained show a reduction of the Power Factor by 1.32%, with respect to the commercial mixtures "Q "73 and "Q "82 an optimum increase in the detonation velocity of 9.92% and 0.59% was obtained, also the high-resolution images of the fumes after blasting indicate a low presence of orange fumes taking a great relevance in the mining sector on a large scale, achieving better results in the blasting phase.

Jingru Li ◽  
Zujia Lu ◽  
Bokun Li ◽  
Hao Wu ◽  
Jiaxuan Wu ◽  

In this work, we designed a series of energetic materials with a windmill-like structure based on guanidine and nitroazole, and optimized them at the B3LYP/6-311G** level using density functional theory (DFT). According to the optimization results, 6 molecules with planar structures were screened out from 28 molecules and their regularities were summarized. We calculated their geometry, natural bond orbital (NBO) charge, frontier molecular orbital, molecular surface electrostatic potential, and thermochemical parameters. In addition, their properties such as density, enthalpy of formation, detonation velocity, detonation pressure and impact sensitivity are also predicted. The result shows that this series of compounds is a promising new type of energetic material, especially compound 1 has superior detonation velocity and detonation pressure (D=9720m/s, P=41.9GPa).

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2931
Izabella Kwiecien ◽  
Anna Wierzbicka-Miernik ◽  
Maciej Szczerba ◽  
Piotr Bobrowski ◽  
Zygmunt Szulc ◽  

The paper presents the microstructure and phase composition of the interface zone formed in the explosive welding process between technically pure aluminum and nickel. Low and high detonation velocities of 2000 and 2800 m/s were applied to expose the differences of the welded zone directly after the joining as well as subsequent long-term annealing. The large amount of the melted areas was observed composed of a variety of Al-Ni type intermetallics; however, the morphology varied from nearly flat to wavy with increasing detonation velocity. The applied heat treatment at 500 °C has resulted in the formation of Al3Ni and Al3Ni2 layers, which in the first stages of growth preserved the initial interface morphology. Due to the large differences in Al and Ni diffusivities, the porosity formation occurred for both types of clads. Faster consumption of Al3Ni phase at the expense of the growing Al3Ni2 phase, characterized by strong crystallographic texture, has been observed only for the weld obtained at low detonation velocity. As a result of the extended annealing time, the disintegration of the bond occurred due to crack propagation located at the A1050/Al3Ni2 interface.

Xiuxiu Zhao ◽  
Yingchao Zhang ◽  
Congxia Xie ◽  
Long Tan

Energetic compounds containing long nitrogen chain, have been a research hotspot. Fused heterocycles are stable due to their aromatic systems. The compound obtained by combining long nitrogen chain and fused ring can not only retain good energetic property, but also ensure better stability. This work designed eight fused heterocycle-based energetic compounds, 3H-tetrazolo[1,5-d]tetrazole (1) and its derivatives (2-8), containing a nitrogen chain with seven nitrogen atoms. The HOF, thermal stability, and energetic properties of these compounds were studied by using the DFT method. The results show that the introduction of -NO2, -N3, -NF2, -ONO2, -NHNO2 groups increased the density, HOF, detonation velocity, and detonation pressure greatly. The densities of 3, 5, 7, and 8 fall within the range designated for high-energy-density materials. The calculated detonation velocity of the compounds 3 and 8 are up to 9.86 km s-1 and 9.78 km s-1, which are superior to that of CL-20. The kinetic study of the thermal decomposition mechanism indicates that the N-R bonds maybe not the weakest bonds of these compounds. The tetrazole ring opening of the heterocycle-based energetic compounds, followed by N2 elimination is predicted to be the primary decomposition channel, whether or not they have substituent groups.

2021 ◽  
Vol 57 (6) ◽  
pp. 101-111
S. P. Sivapirakasam ◽  
N. Venu Kumar ◽  
G. Jeyabalaganesh ◽  
K. Nagarjuna

Sign in / Sign up

Export Citation Format

Share Document