Bio-Inspired Control Approach to Multiple Spacecraft Formation Flying

Author(s):  
Liguo Weng ◽  
Wenchan Cai ◽  
Ran Zhang ◽  
Y.d. Song
2006 ◽  
Vol 129 (3) ◽  
pp. 337-342 ◽  
Author(s):  
Hong-Tao Liu ◽  
Jinjun Shan ◽  
Dong Sun

An adaptive nonlinear synchronization control approach is developed for multiple spacecraft formation flying with elliptical reference orbits. It can guarantee that both the tracking errors and the synchronization errors of the relative positions converge to zero globally, even in the presence of uncertain parameters. The generalized synchronization concept allows us to design various synchronization errors so that different synchronization performance can be obtained. Simulation results of a leader-follower spacecraft pair and the maneuvering of multiple spacecraft in formation flying are presented to verify the effectiveness of the proposed control technique.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Liguo Weng ◽  
Min Xia ◽  
Kai Hu ◽  
Zhuhan Qiao

This paper addresses the problem of formation control for multiple spacecrafts in Planetary Orbital Environment (POE). Due to the presence of diverse interferences and uncertainties in the outer space, such as the changing spacecraft mass, unavailable space parameters, and varying gravity forces, traditional control methods encounter great difficulties in this area. A new control approach inspired by human memory and immune system is proposed, and this approach is shown to be capable of learning from past control experience and current behavior to improve its performance. It demands much less system dynamic information as compared with traditional controls. Both theoretic analysis and computer simulation verify its effectiveness.


2007 ◽  
Vol 129 (5) ◽  
pp. 689-698 ◽  
Author(s):  
Ming Xin ◽  
S. N. Balakrishnan ◽  
H. J. Pernicka

Control of deep-space spacecraft formation flying is investigated in this paper using the virtual structure approach and the θ-D suboptimal control technique. The circular restricted three-body problem with the Sun and the Earth as the two primaries is utilized as a framework for study and a two-satellite formation flying scheme is considered. The virtual structure is stationkept in a nominal orbit around the L2 libration point. A maneuver mode of formation flying is then considered. Each spacecraft is required to maneuver to a new position and the formation line of sight is required to rotate to a desired orientation to acquire new science targets. During the rotation, the formation needs to be maintained and each spacecraft’s attitude must align with the rotating formation orientation. The basic strategy is based on a “virtual structure” topology. A nonlinear model is developed that describes the relative formation dynamics. This highly nonlinear position and attitude control problem is solved by employing a recently developed nonlinear control approach, called the θ-D technique. This method is based on an approximate solution to the Hamilton-Jacobi-Bellman equation and yields a closed-form suboptimal feedback solution. The controller is designed such that the relative position error of the formation is maintained within 1cm accuracy.


2010 ◽  
Vol 2010 ◽  
pp. 1-13 ◽  
Author(s):  
Jinjun Shan ◽  
Piotr Wenderski

This paper presents a hardware-in-the-loop (HITL) simulation approach for multiple spacecraft formation flying. Considering a leader-follower formation flying configuration, a Fuzzy Logic controller is developed first to maintain the desired formation shape under external perturbations and the initial position offsets. Cold-gas on/off thrusters are developed to be introduced to the simulation loop, and the HITL simulations are conducted to validate the effectiveness of the proposed simulation configuration and Fuzzy Logic control.


Sign in / Sign up

Export Citation Format

Share Document