scholarly journals A non-parametric hierarchical clustering model

Author(s):  
Saad Mohamad ◽  
Abdelhamid Bouchachia ◽  
Moamar Sayed-Mouchaweh
Author(s):  
Sanat Kumar Sahu ◽  
A. K. Shrivas

The purpose of this article is to weigh up the foremost imperative features of Chronic Kidney Disease (CKD). This study is based mostly on three cluster techniques like; K means, Fuzzy c-means and hierarchical clustering. The authors used evolutionary techniques like genetic algorithms (GA) to extend the performance of the clustering model. The performance of these three clusters: live parameter purity, entropy, and Adjusted Rand Index (ARI) have been contemplated. The best purity is obtained by the K-means clustering technique, 96.50%; whereas, Fuzzy C-means clustering received 93.50% and hierarchical clustering was the lowest at 92. 25%. After using evolutionary technique Genetic Algorithm as Feature selection technique, the best purity is obtained by hierarchical clustering, 97.50%, compared to K –means clustering, 96.75%, and Fuzzy C-means clustering at 94.00%.


Author(s):  
Sanat Kumar Sahu ◽  
A. K. Shrivas

The purpose of this article is to weigh up the foremost imperative features of Chronic Kidney Disease (CKD). This study is based mostly on three cluster techniques like; K means, Fuzzy c-means and hierarchical clustering. The authors used evolutionary techniques like genetic algorithms (GA) to extend the performance of the clustering model. The performance of these three clusters: live parameter purity, entropy, and Adjusted Rand Index (ARI) have been contemplated. The best purity is obtained by the K-means clustering technique, 96.50%; whereas, Fuzzy C-means clustering received 93.50% and hierarchical clustering was the lowest at 92. 25%. After using evolutionary technique Genetic Algorithm as Feature selection technique, the best purity is obtained by hierarchical clustering, 97.50%, compared to K –means clustering, 96.75%, and Fuzzy C-means clustering at 94.00%.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
P. M. Booma ◽  
S. Prabhakaran ◽  
R. Dhanalakshmi

Microarray gene expression datasets has concerned great awareness among molecular biologist, statisticians, and computer scientists. Data mining that extracts the hidden and usual information from datasets fails to identify the most significant biological associations between genes. A search made with heuristic for standard biological process measures only the gene expression level, threshold, and response time. Heuristic search identifies and mines the best biological solution, but the association process was not efficiently addressed. To monitor higher rate of expression levels between genes, a hierarchical clustering model was proposed, where the biological association between genes is measured simultaneously using proximity measure of improved Pearson's correlation (PCPHC). Additionally, the Seed Augment algorithm adopts average linkage methods on rows and columns in order to expand a seed PCPHC model into a maximal global PCPHC (GL-PCPHC) model and to identify association between the clusters. Moreover, a GL-PCPHC applies pattern growing method to mine the PCPHC patterns. Compared to existing gene expression analysis, the PCPHC model achieves better performance. Experimental evaluations are conducted for GL-PCPHC model with standard benchmark gene expression datasets extracted from UCI repository and GenBank database in terms of execution time, size of pattern, significance level, biological association efficiency, and pattern quality.


Sign in / Sign up

Export Citation Format

Share Document