Device Loss Characterization Procedure for Dual-Active Bridge under Light Load Conditions

Author(s):  
Howe Li Yeo ◽  
Radhika Sarda ◽  
Vaisambhayana Sriram
2021 ◽  
Vol 300 ◽  
pp. 01009
Author(s):  
Xiaobin Mu ◽  
Xiang Wang ◽  
Fengjiao Dai

Three-phase dual active bridge converter has many performance advantages, and is widely used in electric vehicle charging, battery energy storage system, power electronic transformer, and other energy conversion occasions. However, in the traditional control method, it has the problem of low efficiency under light load conditions. In this paper, firstly, the power and current expressions of the converter under light load conditions are solved by time-domain analysis, and an optimal current control method under light load conditions is proposed. This control method can simultaneously realize the minimum inductance current stress and RMS. Finally, the effectiveness of this method is verified by experiments.


2019 ◽  
Vol 8 (2) ◽  
pp. 3167-3175

Dual Active Bridge (DAB) is an isolated bidirectional DC-DC converter, which comprises two full bridge converterslinked through a high frequency transformer. It haslow stresses and permits high frequency performance because of the soft-switching. All the switches in the converter achieves the turn ON & OFF during Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) to minimize switching loss. Generally, DAB is classified as two types, namely, voltage-fed and current-fed variants. At light load conditions, soft-switching is not realized in case of voltage-fed DAB topologies. The application of current-fed DAB converters is to reduce the losses at the time of switching under light load conditions and improves the efficiency. This paper describes the various topologies of voltage-fed and current-fed DAB used for different applications in microgrid and fuel cell energy generation system by using the simulation. The performance of voltage-fed and current-fed DAB with snubber-less converters are also demonstrated and their effectiveness are validated


Sign in / Sign up

Export Citation Format

Share Document