Practical performance evaluations of a soft switching PWM boost DC-DC converter with high efficiency and high scalability edge resonant switched capacitor modular

Author(s):  
Tomokazu Mishima ◽  
Yujiro Takeuchi ◽  
Mutsuo Nakaoka
2012 ◽  
Vol 433-440 ◽  
pp. 5549-5555
Author(s):  
Yun Tao Yue ◽  
Yan Lin

A novel scheme of low power communication power supply with high power factor and soft-switching is presented, a power factor corrector and dc/dc converter of passive lossless soft-switching is based on a ML4803 IC control. DC/DC converter introduces a novel two-transistor forward soft-switching technique, which realizes zero-voltage turn-on and turn-off, with no additional switches. a communication power supply module is developed in this paper. It has the characteristics of rapid dynamic response, high power factor, high efficiency and small bulk ect.


Author(s):  
Kunalkumar Prakashbhai Bhatt ◽  
Ram Avtar Gupta ◽  
Nitin Gupta

Abstract Abstract: In this paper, a modified flyback snubber circuit for isolated bidirectional DC-DC converter has been introduced. The soft switching isolated snubber circuit provides an alternative path for the current difference created due to source inductance and leakage inductance. The auxiliary snubber circuit operates during the step-up conversion, and it only persists of the two semiconductor switch, two inductors one diode and two capacitors. Both semiconductor devices (G1, G2) of flyback snubber circuit achieve soft switching during turn ON and turn OFF condition. The PWM technique has been used to control the semiconductor devices. The different mode of operation has been discussed in detail. The effective performance of proposed converter system has been validated with the PSIM simulation tool. The proposed converter is compared with the active clamp converter based on efficiency. The loss comparison proves that flyback snubber circuit has high efficiency compared to active clamp converter.


Sign in / Sign up

Export Citation Format

Share Document