HVDC Transmission of Offshore Wind Farm Using Current-Source Actively Commutated Converter With Very-Low-Capacity AC Network

Author(s):  
Zixin Li ◽  
Kedong Luan ◽  
Fei Xu ◽  
Fanqiang Gao ◽  
Cong Zhao ◽  
...  
2021 ◽  
Author(s):  
Miteshkumar Nandlal Popat

Recently, offshore wind farms have emerged as the most promising sector in the global renewable energy industry. The main reasons for the rapid development of offshore wind farms includes much better wind resources and smaller environmental impact (e.g., audible noise and visual effect). However, the current state of the offshore wind power presents economic challenges significantly greater than onshore. In this thesis, a novel interconnecting method for permanent magnet synchronous generator (PMSG)-based offshore wind farm is proposed, where cascaded pulse-width modulated (PWM) current-source converters (CSCs) are employed on both generator- and grid-side. With the converters in cascade to achieve high operating voltages, the proposed method eliminates the need for bulky and very costly offshore converter substation which is usually employed in voltage source converter (VSC) high voltage DC (HVDC)-based counterparts. Related research in terms of control schemes and grid integration are carried out to adapt the proposed cascaded CSC-based offshore wind farm configuration. The large distance between generator- and grid-side CSC in the proposed wind farm configuration addresses significant challenges for the system control. In order to overcome the problem, a novel decoupled control scheme is developed. The active and reactive power control on the grid-side converters are achieved without any exchange of information from the generator-side controller. Therefore, the long distance communication links between the generator- and grid-side converters are eliminated and both controllers are completely decoupled. At the same time, the maximum power tracking control is achieved for the generator-side converters that enable full utilization of the wind energy. Considering inconsistent wind speed at each turbine, a coordinated control scheme is proposed for the cascaded CSC-based offshore wind farm. In proposed control strategy, the wind farm supervisory control (WFSC) is developed to generate the optimized dc-link current control. This enables all the turbines to independently track their own MPPT even with inconsistent wind speed at each turbine. Grid integration issues, especially the fault ride-through (FRT) capability for the cascaded CSC-based offshore wind farm are addressed. Challenges in implementing existing FRT methods to the proposed offshore wind farm are identified. Based on this, a new FRT strategy using inherent short circuit operating capability of the CSC is developed. Moreover, the mitigation strategy is developed to ensure the continuous operation of the cascaded CSC-based offshore wind farm when one or more turbines fail to operate. Simulation and experimental verification for various objectives are provided throughout the thesis. The results validate the proposed solutions for the main challenges of the cascaded current source converter based offshore wind farm.


2014 ◽  
Vol 953-954 ◽  
pp. 342-347
Author(s):  
Yuan Kang Wu ◽  
Ching Yin Lee ◽  
Dong Jing Lee ◽  
Yung Ching Huang

Taiwan is developing the renewable energy actively, in which the wind energy is seen as one of important resources. However, the suitable locations for wind farm constructions are less and less on the shore, and the trend of wind farm development in the future will toward to offshore where the installation capacity of the wind farm could reach hundreds of megawatts. As the installation capacity of the wind farm increases, the effects on the interconnected AC grid are also more notable. In this paper, the off-peak system in Taiwan is used as a studied system in which the Penghu area and Taiwan grid is connected by submarine cables. This study explores the wind farm transmission system including HVAC, HVDC, and hybrid HVAC-HVDC systems and compares the differences of their impact on the system.


Sign in / Sign up

Export Citation Format

Share Document