Autonomous landing on a moving car with unmanned aerial vehicle

Author(s):  
Tomas Baca ◽  
Petr Stepan ◽  
Martin Saska
2019 ◽  
Vol 7 (3) ◽  
pp. 120-132
Author(s):  
Kashish Gupta ◽  
Bara Jamal Emran ◽  
Homayoun Najjaran

Purpose The purpose of this paper is to facilitate autonomous landing of a multi-rotor unmanned aerial vehicle (UAV) on a moving/tilting platform using a robust vision-based approach. Design/methodology/approach Autonomous landing of a multi-rotor UAV on a moving or tilting platform of unknown orientation in a GPS-denied and vision-compromised environment presents a challenge to common autopilot systems. The paper proposes a robust visual data processing system based on targets’ Oriented FAST and Rotated BRIEF features to estimate the UAV’s three-dimensional pose in real time. Findings The system is able to visually locate and identify the unique landing platform based on a cooperative marker with an error rate of 1° or less for all roll, pitch and yaw angles. Practical implications The proposed vision-based system aims at on-board use and increased reliability without a significant change to the computational load of the UAV. Originality/value The simplicity of the training procedure gives the process the flexibility needed to use a marker of any unknown/irregular shape or dimension. The process can be easily tweaked to respond to different cooperative markers. The on-board computationally inexpensive process can be added to off-the-shelf autopilots.


2018 ◽  
Vol 14 (9) ◽  
pp. 155014771880065 ◽  
Author(s):  
Haiwen Yuan ◽  
Changshi Xiao ◽  
Supu Xiu ◽  
Wenqiang Zhan ◽  
Zhenyi Ye ◽  
...  

The vision-based localization of rotor unmanned aerial vehicles for autonomous landing is challenging because of the limited detection range. In this article, to extend the vision detection and measurement range, a hierarchical vision-based localization method is proposed for unmanned aerial vehicle autonomous landing. In such a hierarchical framework, the landing is defined into three phases: “Approaching,”“Adjustment,” and “Touchdown,” in which visual artificial features at different scales can be detected from the designed object pattern for unmanned aerial vehicle pose recovery. The corresponding feature detection and pose estimation algorithms are also presented. In the end, typical simulation and field experiments have been carried out to illustrate the proposed method. The results show that our hierarchical vision-based localization has the ability to a consecutive unmanned aerial vehicle localization in a wider working range from far to near, which is significant for autonomous landing.


Sign in / Sign up

Export Citation Format

Share Document