Optical fiber sensor system design utilizing the field programmable gate array

Author(s):  
Yong Sheng Ong ◽  
Ian Grout ◽  
Elfed Lewis ◽  
Waleed Mohammed
1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari ◽  
Z. Chen ◽  
Q. Li

ABSTRACTStructurally integrated optical fiber sensors form the basis for smart structure technology. Over the past decade a variety of sensor configurations have been developed for measurement of strains and deformations in structures. Strains and deformations alter the refractive index and the geometry of the optical fiber material. These changes perturb the intensity, phase, and polarization of the light-wave propagating along the probing fiber. The optical perturbations are detected for the determination of strain. The research presented here describes the development of a new optical fiber sensor system for measurement of structural strains based on white light interferometry. An optical switch provides for multiplexing of strain signals from various locations in the structure. Redundant Bragg grating type fiber optic sensors as well as strain gauges were employed for comparison and verification of strain signals as measured by the new system. The system provides capability for distributed sensing of strains in large structures.


2020 ◽  
Vol 20 (5) ◽  
pp. 2518-2525
Author(s):  
Arnaldo G. Leal-Junior ◽  
Leticia M. Avellar ◽  
Camilo A. R. Diaz ◽  
Maria Jose Pontes ◽  
Anselmo Frizera

2000 ◽  
Vol 49 (5) ◽  
pp. 307-311 ◽  
Author(s):  
Masaru MITSUSHIO ◽  
Toshifumi YOSHIDOME ◽  
Satsuo KAMATA

Author(s):  
Atsushi Shirakawa ◽  
Toshiyuki Sawa

Abstract Bolted joints are used in many industrial products such as mechanical structures, automobiles, airplanes, chemical plants, and so on. In many cases, after the design of new products is finished, various tests on the bolt and bolted joints are carried out using actual parts to prevent accidents due to bolt loosening and fracture. At the same time, in the strength tests, external force measurement, axial bolt force measurement and so on are included. However, there are no advanced tests in which axial bolt strain distribution or bolt elongation in actual parts and so on are measured. Therefore, in this research, a new method for evaluating bolt strength characteristics using an optical fiber sensor system capable of measuring actual parts is demonstrated. First, a tensile strength test using an optical fiber sensor is carried out to measure strain distribution in a bolt, and a maximum strain value position in the measured clamp load-strain curve is shown. Then, the elongation at each part of the bolt is shown. Next, yield clamp bolt force is found using this sensor system in torque/clamp force testing. In addition, the measured yield clamp bolt force is compared with the values in the conventional measurement method and in the estimation formula. Also, discussed is the effective cross section area by which the stress at the engaged threads is calculated under tensile load. Finally, another case where an optical fiber sensor system is used for bolt fastening evaluation is discussed.


1991 ◽  
Author(s):  
Yu-Feng Chen ◽  
Yue-kun Liang ◽  
Hong Bian

Sign in / Sign up

Export Citation Format

Share Document