strength characteristics
Recently Published Documents


TOTAL DOCUMENTS

2024
(FIVE YEARS 621)

H-INDEX

42
(FIVE YEARS 7)

2022 ◽  
Vol 12 (2) ◽  
pp. 802
Author(s):  
Elena Bragar ◽  
Yakov Pronozin ◽  
Askar Zhussupbekov ◽  
Alexander Gerber ◽  
Assel Sarsembayeva ◽  
...  

Destructuring settlements due to frost heave during the structures’ exploitation are often not taken into account at the designing stage, although they are indirectly related to the bearing capacity of the soils. The objective of this research was analyzing the effect of the number of freezing-thawing cycles on the strength characteristics of soils. A paired experiment with various initial parameters (void ratio, initial moisture content, and the number of freezing-thawing cycles) was carried out. According to the experimental results, the cohesion largely depends on the above parameters which might lead to its decrease by up to three times. The angle of internal friction demonstrated an indefinite behavior during the freeze-thaw cycles, which is confirmed by a literature review. Freezing–thawing cycles significantly decrease the soil bearing capacity: up to 44% after 10 freezing-thawing cycles for soil with and . However, in the case of and it increased by 33%. A program based on the least-squares method was used to calculate the approximation coefficients of the dependence describing the changes in strength characteristics from the abovementioned parameters. Changes in strength characteristics must be taken into account when designing structures, as they can lead to additional settlement or even subsidence of the foundations.


2022 ◽  
Vol 113 (1) ◽  
pp. 19-34
Author(s):  
V. Sharma ◽  
A. Kumar ◽  
A. Kaur

Purpose: Paper assessed the feasibility of crushed concrete aggregates (CCA), a subsidiary of construction and demolition (C&D) waste, blended with cement and sand to form a composite for civil engineering field applications. Design/methodology/approach: The compaction and strength characteristics of CCA were observed by conducting Proctor compaction and California Bearing Ratio (CBR) tests. Different proportions of CCA, sand and cement were used. Moreover, the effect of curing period (0, 4, 7, 14 and 28 days) was also studied. In addition, regression analyses were performed to develop empirical expressions to predict the compaction and strength characteristics of the CCA composite. Findings: Increasing the CCA content up to 50% increases the maximum dry unit weight (MDUW) and decreases the optimum moisture content (OMC). However, on further increasing its content the MDUW decreases and OMC increases. Percent increase in the CBR value can go up to 412% if the CCA content is increased up to 50%. However, the percent reduction in CBR of about 20% can take place if 100% CCA content is used. Moreover, multiple regression shows that the experimental results are in good agreement with the predicted values. Research limitations/implications: The results obtained are purely dependent on the type of material. However, they are in favour of the used material as a probable option for road sub-base layer, and also for reducing burden on available natural resources. Therefore, it is recommended to conduct some initial tests to confirm the feasibility of the material. Practical implications: The proposed study will guide the design Engineers to choose CCA as one of the potential materials for road construction. Originality/value: It was observed that there is a need to maximize the utilization of C&D waste without making any compromise with its mechanical properties. So keeping that in view, the present study was conducted.


Author(s):  
D. A. Kaushanskiy ◽  
◽  
N. R. Bakirov ◽  
V. B. Demyanovskiy ◽  
◽  
...  

Filtration experiments are widely used in the oil and gas industry. They are used to determine the key physical and chemical characteristics of the porous medium, the parameters of fluid filtration. Also, filtration experiments are the main method for evaluating the residual resistance factor for compositions that are used in water shut-off technologies. However, filtration studies are not sufficient to study the distribution of the filtrate over the volume of the porous medium. This paper describes a method for using strength characteristics studies to evaluate the distribution of the polymer-gel system "Temposcreen-Plus" in the pore volume of the core after filtration. A method for representing core strength data in the form of a visualized image of the hardness distribution on a color scale is also proposed. Keywords: strength characteristics; hardness; core; "Temposcreen-Plus"; filtration experiments; visualization.


Author(s):  
S. A. Chizhik ◽  
M. A. Zhuravkov ◽  
A. B. Petrovskiy ◽  
V. Ya. Prushak ◽  
D. A. Puzanov

Methodological approaches to the selection of ultimate state criteria and strength characteristics of the repeatedly undermined rock massifs were developed. These approaches were designed to provide parametric support to the geomechanical modelling of the massif stress-strain state and the mining systems of the Starobin potash deposit mine fields planned for the additional mining of the mineral reserves left. It was established that a complex criterion must be used to study the massif ultimate state. Determination of such criterion can be carried out using the developed approaches. The first approach is to select several criteria that evaluate the massif ultimate state by certain types of the massif stress-strain state. These criteria are the following: the criterion of the maximum normal stresses, criterion of the maximum linear strains, the criterion of the maximum shear stresses and the Coulomb–Mohr failure criterion. The second approach is to construct an integrated failure state criterion for materials whose ultimate tensile and compressive stresses differ significantly. In this case, parameters characterizing the type of stress state and properties of the material are introduced. These parameters together determine the destruction character – tear or shear. To describe the rocks behavior in the extreme strength stage of deformation, it is proposed to apply deformation theory of strength using the developed strain failure criterion. When calculating the strength characteristics of the repeatedly undermined rock massif, it is recommended to use a structural attenuation coefficient as the product of several factors, taking into account various types of disturbances in the primary undermined massif and the time factor. The Coulomb–Mohr strength condition is recommended to be used taking into account the composite structural attenuation coefficient. Dependencies have been developed to describe the change in the strength characteristics of rocks in the undermined massif, considering the attenuation coefficient.


Author(s):  
Екатерина Анатольевна Богданова ◽  
Владимир Михайлович Скачков ◽  
Игорь Маратович Гиниятуллин ◽  
Данил Ильич Переверзев ◽  
Ксения Валерьевна Нефедова

В статье обсуждается возможность получения упрочненного композиционного материала с пористой структурой на основе наноструктурированного гидроксиапатита, синтезированного методом осаждения из раствора. Новый материал получен путем механохимичекого синтеза гидроксиапатита с армирующими добавками диоксида циркония и кремниевой кислоты. Синтезированные образцы аттестованы с использованием современных физико-химических методов анализа. Показано влияние качественного и количественного состава композита на протекание процессов спекания, пористость, прочностные характеристики, степень дисперсности и морфологию исследуемых образцов. Экспериментально установлено, что максимальными прочностными характеристиками и постоянным составом обладает образец Ca(PO)(OH) -15%SiO⋅nHO-5%ZrO. Композиционный материал обладает плотной равномерной структурой с высокой степенью кристалличности, с развитой пористостью, является перспективным материалом для дальнейших исследований с целью внедрения его в медицинскую практику. На разработанный композиционный материал подана заявка на патент. The article discusses the possibility of obtaining a hardened composite material with a porous structure based on nanostructured hydroxyapatite (HAP) synthesized by precipitation from a solution. The new material was obtained by the mechanochemical synthesis of HAP with reinforcing additives of zirconium dioxide and silicic acid. The synthesized samples are certified using modern physicochemical methods of analysis. The influence of the qualitative and quantitative composition of the composite on the sintering processes, porosity, strength characteristics, the degree of dispersion and morphology of the studied samples is shown. It has been experimentally established that the sample has the maximum strength characteristics and a constant composition of Ca(PO)(OH) -15%SiO⋅nHO-5%ZrO. The composite material has a dense uniform structure with a high degree of crystallinity, with a developed porosity, is a promising material for further research in order to introduce it into medical practice. A patent application has been filed for the developed composite material.


Author(s):  
Svetlana Ashurkova

The development of finite element design models of the passenger car body using modern CAD tools was carried out. An assessment of the strength, stability and fatigue life of the load-bearing structures of the passenger car body has been carried out.


Sign in / Sign up

Export Citation Format

Share Document