A unified approach for assessing capstone design projects and student outcomes in computer engineering programs

Author(s):  
Jibran Yousafzai ◽  
Issam Damaj ◽  
Mohammed El Abd
Author(s):  
Vincent Chang

With a growing need to reform Chinese higher engineering education, University of Michigan—Shanghai Jiao Tong University Joint Institute (JI) initiated multinational corporation-sponsored industrial-strength Capstone Design Projects (CDP) in 2011. Since 2011, JI has developed 96 corporate-sponsored CDPs since its inception, which include multinational corporation sponsors such as Covidien, Dover, GE, HP, Intel, NI, Philips, and Siemens. Of these projects, healthcare accounts for 27%, energy 24%, internet technology (IT) 22%, electronics 16%, and other industries 11%. This portfolio reflects the trends and needs in the industry, which provides opportunities for engineering students to develop their careers. An accumulated 480 JI students have been teamed up based on their individual backgrounds, specifically electrical engineering, computer engineering, computer science, mechanical engineering, and biomedical engineering. The corporate-sponsored rate grew from 0% in 2010 to 86% in 2014.


Author(s):  
Chris Rennick ◽  
Eugene Li

The capstone design project is ubiquitous in engineering programs worldwide, and is seen by students as the single most important activity in their undergraduate careers. Staff and faculty at the University of Waterloo identified three issues with the current capstone process: students are unaware of industrial suppliers, they lack multi-disciplinary exposure, and they often struggle to identify "good" needs for their projects. The Engineering IDEAs Clinic, with support from instructors and staff from across Engineering, developed a conference for students to address these issues. EngCon – aimed at students in third/fourth year – brought students together with their peers from other programs, instructors from across the Faculty, and representatives from suppliers (both external industry, and internal support units) with the goal of improving their capstone projects. This paper presents the design and implementation of EngCon in both 2017 and 2018 with lessons learned from offering a large coordinated set of workshops aimed at students as they enter their capstone design projects.  


Author(s):  
Philippe Kruchten ◽  
Paul Lusina

Since 2013, the fourth-year capstone design courses for the electrical and computer engineering programs at UBC are working only with projects defined by industrial partners. These capstone courses run over two terms (September to April) and are worth 10 credits. The projects involves teams of five students, which follow a common timeline, produce a common set of deliverables, and have a common evaluation scheme –with some latitude for variation based on the nature of the project and the type of partner. A key objective is to include non-technical graduate attributes, the so-called “soft skills”, in our learning outcomes. In this paper, we describe our current course framework, our constraints and design choices, and we report lessons learned and improvements implemented over 6 years.  


Author(s):  
Vincent Wilczynski ◽  
Andrew C. Foley

The assessment of Student Outcomes is an import component for program evaluation and improvement. Though not proposed as the only tool a program should employ to measure the achievement of outcomes, the capstone design course can be a valuable mechanism to measure performance with regards to Student Outcomes. Because of the expansive reach of the engineering design process, capstone design projects present a natural environment to structure assessment activities that directly map to Student Outcomes. This paper presents versions of the Mechanical Engineering capstone design course that have been specifically structured to assess achievement of Student Outcomes commonly included in engineering accreditation criteria. Typically the outcomes are assessed by assignments that guide the engineering design process.


2020 ◽  
Vol 2020 ◽  
pp. 1-17 ◽  
Author(s):  
Kala Meah ◽  
Donald Hake ◽  
Stephen Drew Wilkerson

This paper presents a multidisciplinary open-ended capstone design project where students designed, built, and test drove a Formula Society of Automatic Engineers (FSAE) electric vehicle. The capstone team included students from computer, electrical, and mechanical engineering programs. Each student worked in on a subteam, namely, mechanical design, drivetrain, supervisory control and data acquisition, and battery management system. A thorough description of each subsystem is provided herein. Software architecture, system integration, and field test results are also reviewed. Team organization, faculty and industry involvement, and assessment of student outcomes are provided. This paper details the approach of building a bridge between academia and engineering practices. This paper also documents a process where undergraduate students research and master multiple technology areas and then apply them to the project’s focus. ABET student outcomes 1–7 were used to design and assess the course. Peer-to-peer rating and ranking are presented as an assessment tool for the multidisciplinary nature of the project.


Sign in / Sign up

Export Citation Format

Share Document