A novel objective function for predicting reasonable muscle forces in subject-specific model

Author(s):  
J. Son ◽  
Y. Kim
PLoS ONE ◽  
2012 ◽  
Vol 7 (8) ◽  
pp. e44406 ◽  
Author(s):  
Pauline Gerus ◽  
Guillaume Rao ◽  
Eric Berton

2009 ◽  
Vol 87 (1-2) ◽  
pp. 156-169 ◽  
Author(s):  
Stefano Corazza ◽  
Lars Mündermann ◽  
Emiliano Gambaretto ◽  
Giancarlo Ferrigno ◽  
Thomas P. Andriacchi

2009 ◽  
Vol 12 (01) ◽  
pp. 31-43 ◽  
Author(s):  
Rositsa T. Raikova

Less attention is paid to joint reactions when optimization tasks are solved aiming to predict individual muscle forces driving a biomechanical model. The reactions are important, however, for joint stability and for prevention from injuries, especially for fast motions and submaximal loading. The purpose of the paper is to investigate the influence of the joint reaction as a criterion in an objective function and to study the possibilities for prediction of antagonistic co-contraction. Planar elbow flexions in the sagittal plane with duration from 0.4 to 2 s are simulated, and muscle forces and elbow joint reaction are calculated solving numerically optimization tasks formulated for models with one (elbow moment equation only) and two (elbow and shoulder moment equations) degrees of freedom (DOF). The objective function is a weighted sum of muscle forces and joint reaction raised to different powers. The following conclusions can be made: (1) if the joint reaction is included in the objective function, antagonistic co-contraction can be predicted even for 1 DOF model; in some situations the use of such objective function can destroy the synergistic muscles' action; (2) the prediction of antagonistic muscles' co-contraction for 2 DOF model depends on the way the biarticular muscles are modeled, and this is valid for both dynamic and quasistatic conditions; if there are no biarticular muscles, antagonistic co-contraction cannot be predicted in one joint using popular objective functions, like minimum of sum of muscle forces or muscle stresses raised to a power.


2019 ◽  
Vol 2019.32 (0) ◽  
pp. 238
Author(s):  
Yuima KOBAYASHI ◽  
Shunichi ISHIDA ◽  
Naoki TAKEISHI ◽  
Yohsuke IMAI ◽  
Shigeo WADA

2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Swithin S. Razu ◽  
Trent M. Guess

Computational models that predict in vivo joint loading and muscle forces can potentially enhance and augment our knowledge of both typical and pathological gaits. To adopt such models into clinical applications, studies validating modeling predictions are essential. This study created a full-body musculoskeletal model using data from the “Sixth Grand Challenge Competition to Predict in vivo Knee Loads.” This model incorporates subject-specific geometries of the right leg in order to concurrently predict knee contact forces, ligament forces, muscle forces, and ground contact forces. The objectives of this paper are twofold: (1) to describe an electromyography (EMG)-driven modeling methodology to predict knee contact forces and (2) to validate model predictions by evaluating the model predictions against known values for a patient with an instrumented total knee replacement (TKR) for three distinctly different gait styles (normal, smooth, and bouncy gaits). The model integrates a subject-specific knee model onto a previously validated generic full-body musculoskeletal model. The combined model included six degrees-of-freedom (6DOF) patellofemoral and tibiofemoral joints, ligament forces, and deformable contact forces with viscous damping. The foot/shoe/floor interactions were modeled by incorporating shoe geometries to the feet. Contact between shoe segments and the floor surface was used to constrain the shoe segments. A novel EMG-driven feedforward with feedback trim motor control strategy was used to concurrently estimate muscle forces and knee contact forces from standard motion capture data collected on the individual subject. The predicted medial, lateral, and total tibiofemoral forces represented the overall measured magnitude and temporal patterns with good root-mean-squared errors (RMSEs) and Pearson's correlation (p2). The model accuracy was high: medial, lateral, and total tibiofemoral contact force RMSEs = 0.15, 0.14, 0.21 body weight (BW), and (0.92 < p2 < 0.96) for normal gait; RMSEs = 0.18 BW, 0.21 BW, 0.29 BW, and (0.81 < p2 < 0.93) for smooth gait; and RMSEs = 0.21 BW, 0.22 BW, 0.33 BW, and (0.86 < p2 < 0.95) for bouncy gait, respectively. Overall, the model captured the general shape, magnitude, and temporal patterns of the contact force profiles accurately. Potential applications of this proposed model include predictive biomechanics simulations, design of TKR components, soft tissue balancing, and surgical simulation.


2018 ◽  
Vol 51 ◽  
pp. 58-66 ◽  
Author(s):  
Maxim Van den Abbeele ◽  
Fan Li ◽  
Vincent Pomero ◽  
Dominique Bonneau ◽  
Baptiste Sandoz ◽  
...  

2012 ◽  
Vol 14 (S1) ◽  
Author(s):  
Ian Burger ◽  
Ernesta M Meintjes ◽  
Jennifer Keegan ◽  
David N Firmin

Sign in / Sign up

Export Citation Format

Share Document