INVESTIGATION OF THE INFLUENCE OF THE ELBOW JOINT REACTION ON THE PREDICTED MUSCLE FORCES USING DIFFERENT OPTIMIZATION FUNCTIONS

2009 ◽  
Vol 12 (01) ◽  
pp. 31-43 ◽  
Author(s):  
Rositsa T. Raikova

Less attention is paid to joint reactions when optimization tasks are solved aiming to predict individual muscle forces driving a biomechanical model. The reactions are important, however, for joint stability and for prevention from injuries, especially for fast motions and submaximal loading. The purpose of the paper is to investigate the influence of the joint reaction as a criterion in an objective function and to study the possibilities for prediction of antagonistic co-contraction. Planar elbow flexions in the sagittal plane with duration from 0.4 to 2 s are simulated, and muscle forces and elbow joint reaction are calculated solving numerically optimization tasks formulated for models with one (elbow moment equation only) and two (elbow and shoulder moment equations) degrees of freedom (DOF). The objective function is a weighted sum of muscle forces and joint reaction raised to different powers. The following conclusions can be made: (1) if the joint reaction is included in the objective function, antagonistic co-contraction can be predicted even for 1 DOF model; in some situations the use of such objective function can destroy the synergistic muscles' action; (2) the prediction of antagonistic muscles' co-contraction for 2 DOF model depends on the way the biarticular muscles are modeled, and this is valid for both dynamic and quasistatic conditions; if there are no biarticular muscles, antagonistic co-contraction cannot be predicted in one joint using popular objective functions, like minimum of sum of muscle forces or muscle stresses raised to a power.

Author(s):  
Daniel V. Boguszewski ◽  
Safa T. Herfat ◽  
Christopher T. Wagner ◽  
David L. Butler ◽  
Jason T. Shearn

Anterior cruciate ligament injury (ACL) affects an estimated 250,000 people annually [1]. Unfortunately, even with ACL reconstruction, the likely prognosis is long-term osteoarthritis (OA) [2]. Many strides have been made in attempting to understand and improve this outcome. The use of robotic technology has provided an avenue for researchers to examine the ACL’s role in knee joint stability in all six anatomical degrees of freedom (DOF) [3]. The overall goal of our lab robotics research is to use this technology to understand ACL function during activities of daily living (ADLs) in hopes of developing a biomechanical animal model which can be used as a preclinical tool to design new repair methods and materials. We have examined three species (ovine, porcine, and human), measuring all forces and moments produced from displacement control motion paths developed for cyclic testing in a robotic system (KUKA; KR210). This information will provide a basis for comparing intact knee biomechanics and ACL function across species. With these robotic inputs, we have performed a series of studies to aid in the development of a biomechanical model of the human knee.


2018 ◽  
Vol 85 (5) ◽  
pp. 321-330 ◽  
Author(s):  
Stefan Birgel ◽  
Tim Leschinger ◽  
Kilian Wegmann ◽  
Manfred Staat

Abstract Using the OpenSim software and verified anatomical data, a computer model for the calculation of biomechanical parameters is developed and used to determine the effect of a reattachment of the Supraspinatus muscle with a medial displacement of the muscle attachment point, which may be necessary for a rupture of the supraspinatus tendon. The results include the influence of the operation on basic biomechanical parameters such as the lever arm, as well as the calculated the muscle activations for the supraspinatus and deltoid. In addition, the influence on joint stability is examined by an analysis of the joint reaction force. The study provides a detailed description of the used model, as well as medical findings to a reattachment of the supraspinatus.


2014 ◽  
Vol 30 (2) ◽  
pp. 282-289 ◽  
Author(s):  
Michael W.R. Holmes ◽  
Peter J. Keir

Understanding joint stiffness and stability is beneficial for assessing injury risk. The purpose of this study was to examine joint rotational stiffness for individual muscles contributing to elbow joint stability. Fifteen male participants maintained combinations of three body orientations (standing, supine, sitting) and three hand preloads (no load, solid tube, fluid filled tube) while a device imposed a sudden elbow extension. Elbow angle and activity from nine muscles were inputs to a biomechanical model to determine relative contributions to elbow joint rotational stiffness, reported as percent of total stiffness. A body orientation by preload interaction was evident for most muscles (P< .001). Brachioradialis had the largest change in contribution while standing (no load, 18.5%; solid, 23.8%; fluid, 26.3%). Across trials, the greatest contributions were brachialis (30.4 ± 1.9%) and brachioradialis (21.7 ± 2.2%). Contributions from the forearm muscles and triceps were 5.5 ± 0.6% and 9.2 ± 1.9%, respectively. Contributions increased at time points closer to the perturbation (baseline to anticipatory), indicating increased neuromuscular response to resist rotation. This study quantified muscle contributions that resist elbow perturbations, found that forearm muscles contribute marginally and showed that orientation and preload should be considered when evaluating elbow joint stiffness and safety.


2011 ◽  
Vol 117-119 ◽  
pp. 730-736
Author(s):  
Xin Ping Hou ◽  
Xi Shi Wang

After a series of impactful predigestion,the paper established one elbow joint dynamic model in the sgittal plane when the humerus was not fixed. According to the results of the example, two conclusions were drawed: firstly, the joint reaction engendered when the humerus movable were far less than the situation of fixing;secondly, we suggested ,when upright position bend elbow strength training was making , desirable buckling shoulder angle position is at 100~200 .


2017 ◽  
Vol 32 (2) ◽  
pp. 85-93 ◽  
Author(s):  
Luke Hopper ◽  
Cliffton Chan ◽  
Suzanne Wijsman ◽  
Timothy Ackland ◽  
Peter Visentin ◽  
...  

BACKGROUND: Elite cello playing requires complex and refined motor control. Cellists are prone to right shoulder and thoracolumbar injuries. Research informing injury management of cellists and cello pedagogy is limited. The aims of this study were to quantify the torso, right shoulder, and elbow joint movement used by elite cellists while performing a fundamental playing task, a C major scale, under two volume conditions. METHODS: An eight degrees of freedom upper limb biomechanical model was applied to 3D motion capture data of the torso, upper arm, and forearm for 31 cellists with a mean experience of 19.4 yrs (SD 9.1). Two-factor ANOVA compared the joint positions between the four cello strings and two volume conditions. FINDINGS: Significant (p<0.05) effects were found for either the string and/or volume conditions across all torso, shoulder, and elbow joint degrees of freedom. The torso was consistently positioned in left rotation from 5.0° (SD 5.6) at the beginning of the scale, increasing to 16.3° (5.5) at its apogee. The greatest mean shoulder flexion, internal rotation, and abduction joint angles were observed when playing at the tip of the bow on the top string (A): 107.2° (11.6), 59.1° (7.1), and -76.9° (15.7), respectively, during loud playing. INTERPRETATION: Elite cellists use specific movement patterns to achieve string crossings and volume regulation during fundamental playing tasks. Implications of the static left-rotated torso posture and high degrees of combined shoulder flexion and internal rotation can be used to inform clinical and pedagogical practices.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


1998 ◽  
Vol 1 (1) ◽  
pp. 23-39
Author(s):  
Carter J. Kerk ◽  
Don B. Chaffin ◽  
W. Monroe Keyserling

The stability constraints of a two-dimensional static human force exertion capability model (2DHFEC) were evaluated with subjects of varying anthropometry and strength capabilities performing manual exertions. The biomechanical model comprehensively estimated human force exertion capability under sagittally symmetric static conditions using constraints from three classes: stability, joint muscle strength, and coefficient of friction. Experimental results showed the concept of stability must be considered with joint muscle strength capability and coefficient of friction in predicting hand force exertion capability. Information was gained concerning foot modeling parameters as they affect whole-body stability. Findings indicated that stability limits should be placed approximately 37 % the ankle joint center to the posterior-most point of the foot and 130 % the distance from the ankle joint center to the maximal medial protuberance (the ball of the foot). 2DHFEC provided improvements over existing models, especially where horizontal push/pull forces create balance concerns.


2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Alexander Agboola-Dobson ◽  
Guowu Wei ◽  
Lei Ren

Recent advancements in powered lower limb prostheses have appeased several difficulties faced by lower limb amputees by using a series-elastic actuator (SEA) to provide powered sagittal plane flexion. Unfortunately, these devices are currently unable to provide both powered sagittal plane flexion and two degrees of freedom (2-DOF) at the ankle, removing the ankle’s capacity to invert/evert, thus severely limiting terrain adaption capabilities and user comfort. The developed 2-DOF ankle system in this paper allows both powered flexion in the sagittal plane and passive rotation in the frontal plane; an SEA emulates the biomechanics of the gastrocnemius and Achilles tendon for flexion while a novel universal-joint system provides the 2-DOF. Several studies were undertaken to thoroughly characterize the capabilities of the device. Under both level- and sloped-ground conditions, ankle torque and kinematic data were obtained by using force-plates and a motion capture system. The device was found to be fully capable of providing powered sagittal plane motion and torque very close to that of a biological ankle while simultaneously being able to adapt to sloped terrain by undergoing frontal plane motion, thus providing 2-DOF at the ankle. These findings demonstrate that the device presented in this paper poses radical improvements to powered prosthetic ankle-foot device (PAFD) design.


Author(s):  
Derek Lura ◽  
Rajiv Dubey ◽  
Stephanie L. Carey ◽  
M. Jason Highsmith

The prostheses used by the majority of persons with hand/arm amputations today have a very limited range of motion. Transradial (below the elbow) amputees lose the three degrees of freedom provided by the wrist and forearm. Some myoeletric prostheses currently allow for forearm pronation and supination (rotation about an axis parallel to the forearm) and the operation of a powered prosthetic hand. Older body-powered prostheses, incorporating hooks and other cable driven terminal devices, have even fewer degrees of freedom. In order to perform activities of daily living (ADL), a person with amputation(s) must use a greater than normal range of movement from other body joints to compensate for the loss of movement caused by the amputation. By studying the compensatory motion of prosthetic users we can understand the mechanics of how they adapt to the loss of range of motion in a given limb for select tasks. The purpose of this study is to create a biomechanical model that can predict the compensatory motion using given subject data. The simulation can then be used to select the best prosthesis for a given user, or to design prostheses that are more effective at selected tasks, once enough data has been analyzed. Joint locations necessary to accomplish the task with a given configuration are calculated by the simulation for a set of prostheses and tasks. The simulation contains a set of prosthetic configurations that are represented by parameters that consist of the degrees of freedom provided by the selected prosthesis. The simulation also contains a set of task information that includes joint constraints, and trajectories which the hand or prosthesis follows to perform the task. The simulation allows for movement in the wrist and forearm, which is dependent on the prosthetic configuration, elbow flexion, three degrees of rotation at the shoulder joint, movement of the shoulder joint about the sternoclavicular joint, and translation and rotation of the torso. All joints have definable restrictions determined by the prosthesis, and task.


Author(s):  
Dexin Zhan ◽  
Don Bass ◽  
David Molyneux

This paper presents a numerical study of seakeeping in regular waves for two vessels in close proximity using commercial seakeeping software HydroStar and an in-house code MOTSIM. The objective was to study the possible sheltering effect of the larger vessel (FPSO) on the smaller one (OSV) during personnel transfer between the two vessels, where one vessel was at some angle relative to the other vessel and there was no connection line between them. The study mainly focused on the OSV motion resulting from the interaction of the FPSO when the OSV was at different headings and wave directions. Initially the OSV motions close to the FPSO (and parallel) were compared with those for the OSV alone. For an un-parallel position of the two vessels, an objective function based on the OSV RAOs motion in roll, pitch and heave directions was used to optimize the OSV position. Finally comparisons between HydroStar and MOTSIM results are provided. The main conclusions are: 1) When the FPSO and OSV are located in parallel, the OSV motions in sway, roll and yaw are larger than the single OSV motions in head waves while surge, heave and pitch are almost the same. The OSV motions in most of the six degrees of freedom are smaller than the single OSV motions when the waves are from other directions (always on the port side of the FPSO), which means that there is a sheltering effect. 2) The simulation results from different OSV rotation angles show that the hydrodynamic interaction between the FPSO and OSV e.g. the sheltering effect is related to the OSV angle and the wave heading. The objective function in roll, pitch and heave RAOs indicates that the OSV should maintain a close to parallel position with the FPSO to minimize motion when the waves come from the port side of the FPSO from 180 to 240 degrees. When the wave direction is around 240 degrees the OSV should have relatively small motion in waves for any OSV rotation angle. 3) A comparison of HydroStar and MOTSIM results shows that the MOTSIM results of a single vessel seakeeping simulation is in a good agreement with HydroStar. In two vessels situation more validation work needs to be done.


Sign in / Sign up

Export Citation Format

Share Document