Evaluation of the Microsoft Kinect for screening ACL injury

Author(s):  
Erik E. Stone ◽  
Michael Butler ◽  
Aaron McRuer ◽  
Aaron Gray ◽  
Jeffrey Marks ◽  
...  
Keyword(s):  
2014 ◽  
Vol 2 (7_suppl2) ◽  
pp. 2325967114S0010 ◽  
Author(s):  
Aaron D. Gray ◽  
Jeff M. Marks ◽  
Erik E. Stone ◽  
Michael C. Butler ◽  
Marjorie Skubic ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 140-159
Author(s):  
B. Hisham ◽  
A. Hamouda

2020 ◽  
Author(s):  
Gopi Krishna Erabati

The technology in current research scenario is marching towards automation forhigher productivity with accurate and precise product development. Vision andRobotics are domains which work to create autonomous systems and are the keytechnology in quest for mass productivity. The automation in an industry canbe achieved by detecting interactive objects and estimating the pose to manipulatethem. Therefore the object localization ( i.e., pose) includes position andorientation of object, has profound ?significance. The application of object poseestimation varies from industry automation to entertainment industry and fromhealth care to surveillance. The objective of pose estimation of objects is verysigni?cant in many cases, like in order for the robots to manipulate the objects,for accurate rendering of Augmented Reality (AR) among others.This thesis tries to solve the issue of object pose estimation using 3D dataof scene acquired from 3D sensors (e.g. Kinect, Orbec Astra Pro among others).The 3D data has an advantage of independence from object texture and invarianceto illumination. The proposal is divided into two phases : An o?ine phasewhere the 3D model template of the object ( for estimation of pose) is built usingIterative Closest Point (ICP) algorithm. And an online phase where the pose ofthe object is estimated by aligning the scene to the model using ICP, providedwith an initial alignment using 3D descriptors (like Fast Point Feature Transform(FPFH)).The approach we develop is to be integrated on two di?erent platforms :1)Humanoid robot `Pyrene' which has Orbec Astra Pro 3D sensor for data acquisition,and 2)Unmanned Aerial Vehicle (UAV) which has Intel Realsense Euclidon it. The datasets of objects (like electric drill, brick, a small cylinder, cake box)are acquired using Microsoft Kinect, Orbec Astra Pro and Intel RealSense Euclidsensors to test the performance of this technique. The objects which are used totest this approach are the ones which are used by robot. This technique is testedin two scenarios, fi?rstly, when the object is on the table and secondly when theobject is held in hand by a person. The range of objects from the sensor is 0.6to 1.6m. This technique could handle occlusions of the object by hand (when wehold the object), as ICP can work even if partial object is visible in the scene.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 997
Author(s):  
Alessandro de Sire ◽  
Nicola Marotta ◽  
Andrea Demeco ◽  
Lucrezia Moggio ◽  
Pasquale Paola ◽  
...  

Anterior cruciate ligament (ACL) injury incidence is often underestimated in tennis players, who are considered as subjects conventionally less prone to knee injuries. However, evaluation of the preactivation of knee stabilizer muscles by surface electromyography (sEMG) showed to be a predictive value in the assessment of the risk of ACL injury. Therefore, this proof-of-concept study aimed at evaluating the role of visual input on the thigh muscle preactivation through sEMG to reduce ACL injury risk in tennis players. We recruited male, adult, semiprofessional tennis players from July to August 2020. They were asked to drop with the dominant lower limb from a step, to evaluate—based on dynamic valgus stress—the preactivation time of the rectus femoris (RF), vastus medialis, biceps femoris, and medial hamstrings (MH), through sEMG. To highlight the influence of visual inputs, the athletes performed the test blindfolded and not blindfolded on both clay and grass surfaces. We included 20 semiprofessional male players, with a mean age 20.3 ± 4.8 years; results showed significant early muscle activation when the subject lacked visual input, but also when faced with a less-safe surface such as clay over grass. Considering the posteromedial–anterolateral relationship (MH/RF ratio), tennis players showed a significant higher MH/RF ratio if blindfolded (22.0 vs. 17.0% not blindfolded; p < 0.01) and percentage of falling on clay (17.0% vs. 14.0% in grass; p < 0.01). This proof-of-principle study suggests that in case of absence of visual input or falling on a surface considered unsafe (clay), neuro-activation would tend to protect the anterior stress of the knee. Thus, the sEMG might play a crucial role in planning adequate athletic preparation for semiprofessional male athletes in terms of reduction of ACL injury risk.


2021 ◽  
Vol 11 (11) ◽  
pp. 4958
Author(s):  
Alessandro de Sire ◽  
Andrea Demeco ◽  
Nicola Marotta ◽  
Lucrezia Moggio ◽  
Arrigo Palumbo ◽  
...  

Neuromuscular warm-up has been shown to decrease the risk of anterior cruciate ligament (ACL) injury improving muscular firing patterns. All preventive training programs described in the literature have a duration of several weeks. To date, no studies have explored the immediate effect of a neuromuscular warm-up exercise on pre-activation time of the knee stabilizer muscles. Thus, this proof-of-principle study aimed at evaluating the acute effects of a neuromuscular warm-up exercises on the electromyographic activation of knee stabilizer muscles’ activation pattern. We included 11 professional football players, mean aged 23.2 ± 4.5 years, from a Southern Italy football team. All of them underwent a standard warm-up exercise protocol at the first day of the evaluation. At 1 week, they underwent a structured neuromuscular warm-up exercise protocol. We assessed as outcome measure the pre-activation time (ms) of rectus femoris (RF), vastus medialis (VM), biceps femoris (BF), and medial hamstrings (MH) upon landing. Outcomes were assessed before and after the standard warm-up and neuromuscular warm-up. Pre-activation time of RF, VM, BF and MH significantly improved only after neuromuscular warm-up (p < 0.05); moreover, there was a significant (p < 0.05) between-group difference in pre-activation time of all muscles after the neuromuscular warm-up compared with the standard warm-up. These findings suggested that physical exercise consisting of a structured injury prevention neuromuscular warm-up might have an immediate effect in improving the activation time of the knee stabilizer muscles, thus potentially reducing the risk of ACL injury.


2020 ◽  
Vol 41 (S1) ◽  
pp. s12-s12
Author(s):  
D. M. Hasibul Hasan ◽  
Philip Polgreen ◽  
Alberto Segre ◽  
Jacob Simmering ◽  
Sriram Pemmaraju

Background: Simulations based on models of healthcare worker (HCW) mobility and contact patterns with patients provide a key tool for understanding spread of healthcare-acquired infections (HAIs). However, simulations suffer from lack of accurate model parameters. This research uses Microsoft Kinect cameras placed in a patient room in the medical intensive care unit (MICU) at the University of Iowa Hospitals and Clinics (UIHC) to obtain reliable distributions of HCW visit length and time spent by HCWs near a patient. These data can inform modeling efforts for understanding HAI spread. Methods: Three Kinect cameras (left, right, and door cameras) were placed in a patient room to track the human body (ie, left/right hands and head) at 30 frames per second. The results reported here are based on 7 randomly selected days from a total of 308 observation days. Each tracked body may have multiple raw segments over the 2 camera regions, which we “stitch” up by matching features (eg, direction, velocity, etc), to obtain complete trajectories. Due to camera noise, in a substantial fraction of the frames bodies display unnatural characteristics including frequent and rapid directional and velocity change. We use unsupervised learning techniques to identify such “ghost” frames and we remove from our analysis bodies that have 20% or more “ghost” frames. Results: The heat map of hand positions (Fig. 1) shows that high-frequency locations are clustered around the bed and more to the patient’s right in accordance with the general medical practice of performing patient exams from their right. HCW visit frequency per hour (mean, 6.952; SD, 2.855) has 2 peaks, 1 during morning shift and 1 during the afternoon shift, with a distinct decrease after midnight. Figure 2 shows visit length (in minutes) distribution (mean, 1.570; SD, 2.679) being dominated by “check in visits” of <30 seconds. HCWs do not spend much time at touching distance from patients during short-length visits, and the fraction of time spent near the patient’s bed seems to increase with visit length up to a point. Conclusions: Using fine-grained data, this research extracts distributions of these critical parameters of HCW–patient interactions: (1) HCW visit length, (2) HCW visit frequency as a function of time of day, and (3) time spent by HCW within touching distance of patient as a function of visit length. To the best of our knowledge, we provide the first reliable estimates of these parameters.Funding: NoneDisclosures: None


Sign in / Sign up

Export Citation Format

Share Document