EEG Emotion Recognition via Graph-based Spatio-Temporal Attention Neural Networks

Author(s):  
Shadi Sartipi ◽  
Mastaneh Torkamani-Azar ◽  
Mujdat Cetin
2021 ◽  
Author(s):  
P. Jiang ◽  
I. Bychkov ◽  
J. Liu ◽  
A. Hmelnov

Forecasting of air pollutant concentration, which is influenced by air pollution accumulation, traffic flow and industrial emissions, has attracted extensive attention for decades. In this paper, we propose a spatio-temporal attention convolutional long short term memory neural networks (Attention-CNN-LSTM) for air pollutant concentration forecasting. Firstly, we analyze the Granger causalities between different stations and establish a hyperparametric Gaussian vector weight function to determine spatial autocorrelation variables, which is used as part of the input feature. Secondly, convolutional neural networks (CNN) is employed to extract the temporal dependence and spatial correlation of the input, while feature maps and channels are weighted by attention mechanism, so as to improve the effectiveness of the features. Finally, a depth long short term memory (LSTM) based time series predictor is established for learning the long-term and short-term dependence of pollutant concentration. In order to reduce the effect of diverse complex factors on LSTM, inherent features are extracted from historical air pollutant concentration data meteorological data and timestamp information are incorporated into the proposed model. Extensive experiments were performed using the Attention-CNNLSTM, autoregressive integrated moving average (ARIMA), support vector regression (SVR), traditional LSTM and CNN, respectively. The results demonstrated that the feasibility and practicability of Attention-CNN-LSTM on estimating CO and NO concentration.


Author(s):  
Chunyu Xie ◽  
Ce Li ◽  
Baochang Zhang ◽  
Chen Chen ◽  
Jungong Han ◽  
...  

Skeleton-based action recognition task is entangled with complex spatio-temporal variations of skeleton joints, and remains challenging for Recurrent Neural Networks (RNNs). In this work, we propose a temporal-then-spatial recalibration scheme to alleviate such complex variations, resulting in an end-to-end Memory Attention Networks (MANs) which consist of a Temporal Attention Recalibration Module (TARM) and a Spatio-Temporal Convolution Module (STCM). Specifically, the TARM is deployed in a residual learning module that employs a novel attention learning network to recalibrate the temporal attention of frames in a skeleton sequence. The STCM treats the attention calibrated skeleton joint sequences as images and leverages the Convolution Neural Networks (CNNs) to further model the spatial and temporal information of skeleton data. These two modules (TARM and STCM) seamlessly form a single network architecture that can be trained in an end-to-end fashion. MANs significantly boost the performance of skeleton-based action recognition and achieve the best results on four challenging benchmark datasets: NTU RGB+D, HDM05, SYSU-3D and UT-Kinect.


2020 ◽  
Author(s):  
Zheng Lian ◽  
Jianhua Tao ◽  
Bin Liu ◽  
Jian Huang ◽  
Zhanlei Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document