Bone Tissue Scaffolds Designed With A Porosity Gradient Based On Triply Periodic Minimal Surfaces Using A Parametric Approach

Author(s):  
Mariana S. Flores-Jimenez ◽  
Rita Q. Fuentes-Aguilar
Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 596
Author(s):  
Rafael Guerreiro ◽  
Tiago Pires ◽  
José M. Guedes ◽  
Paulo R. Fernandes ◽  
André P. G. Castro

Recently, bone tissue engineering (TE) has seen new developments, with triply periodic minimal surfaces (TPMSs) being used to develop new porosity-controlled scaffolds to interface new tissue growth. The process of choosing the best geometry to a specific application still lacks research, so the goal for this work is to propose a new method of scaffold selection, based on assessing the tortuosity inside these symmetric TPMS-based structures. Additionally, computer fluid dynamic (CFD) simulations were conducted to validate this method. The comparison between tortuosity and CFD outputs suggests that an analysis of the tortuosity could be used as an early indicator of the scaffold’s viability for specific applications, favouring scaffolds with more intricate and curvature-dependent streamlines.


Author(s):  
A. Fogden

AbstractA systematic analysis of a family of triply periodic minimal surfaces of genus seven and trigonal symmetry is given. The family is found to contain five such surfaces free from self-intersections, three of which are previously unknown. Exact parametrisations of all surfaces are provided using the Weierstrass representation.


2020 ◽  
Vol 11 ◽  
pp. 204173142095654
Author(s):  
Anna Diez-Escudero ◽  
Hugo Harlin ◽  
Per Isaksson ◽  
Cecilia Persson

Three different triply periodic minimal surfaces (TPMS) with three levels of porosity within those of cancellous bone were investigated as potential bone scaffolds. TPMS have emerged as potential designs to resemble the complex mechanical and mass transport properties of bone. Diamond, Schwarz, and Gyroid structures were 3D printed in polylactic acid, a resorbable medical grade material. The 3D printed structures were investigated for printing feasibility, and assessed by morphometric studies. Mechanical properties and permeability investigations resulted in similar values to cancellous bone. The morphometric analyses showed three different patterns of pore distribution: mono-, bi-, and multimodal pores. Subsequently, biological activity investigated with pre-osteoblastic cell lines showed no signs of cytotoxicity, and the scaffolds supported cell proliferation up to 3 weeks. Cell differentiation investigated by alkaline phosphatase showed an improvement for higher porosities and multimodal pore distributions, suggesting a higher dependency on pore distribution and size than the level of interconnectivity.


Sign in / Sign up

Export Citation Format

Share Document