scholarly journals Reducing 3D wavelet transform execution time through the Streaming SIMD Extensions

Author(s):  
G. Bernabe ◽  
J.M. Garcia ◽  
J. Gonzalez
2019 ◽  
Vol 8 (2S11) ◽  
pp. 3567-3570

Health Informatics systems preserves the patient’s digital records. Two techniques that help in this process are watermarking and encryption. In this paper a reversible image watermarking scheme with logistic encryption is presented. The reversible watermarking is utilizing the concept of integer wavelet transform. The image is divided into sub bands and then the binary data is hidden in these sub bands. The watermarked wavelet sub bands are passed through logistic encryption module which scrambles the coefficients. These coefficients are then sent to inverse wavelet transform for image reconstruction. This process helps encrypt the image though spectral scrambling, thus resulting in faster and better encryption. The proposed algorithm outperforms the exiting algorithms in terms of execution time and the level of encryption.


2011 ◽  
Vol 356-360 ◽  
pp. 2897-2903
Author(s):  
Fen Fen Guo ◽  
Jian Rong Fan ◽  
Wen Qian Zang ◽  
Fei Liu ◽  
Huai Zhen Zhang

The vacancy of hyperspectral image (HSI) in China is made up by HJ-1A satellite, which makes more study and application possible. But comparing with other HSI, low spatial resolution turns into a big limiting obstacle for application. In order to improve the HSI quality and make full use of the existing RS data, this paper proposed a fusion approach basing on 3D wavelet transform (3D WT) to fusing HJ-1A HSI and Multispectral image (MSI) using their 3D structure. Contrasting with the principal component transform (PCA) and Gram-Schmidt fusion approach, which are mature at present, 3D WT fusion approach use all bands of MSI to its advantage and the fusion result perform better in both spatial and spectral quality.


Author(s):  
YONGJIAN NIAN ◽  
LEHUA WU ◽  
SHIBIAO HE ◽  
XIAOFANG YUAN

2020 ◽  
Vol 10 (18) ◽  
pp. 6296 ◽  
Author(s):  
Gökalp Çinarer ◽  
Bülent Gürsel Emiroğlu ◽  
Ahmet Haşim Yurttakal

Gliomas are the most common primary brain tumors. They are classified into 4 grades (Grade I–II-III–IV) according to the guidelines of the World Health Organization (WHO). The accurate grading of gliomas has clinical significance for planning prognostic treatments, pre-diagnosis, monitoring and administration of chemotherapy. The purpose of this study is to develop a deep learning-based classification method using radiomic features of brain tumor glioma grades with deep neural network (DNN). The classifier was combined with the discrete wavelet transform (DWT) the powerful feature extraction tool. This study primarily focuses on the four main aspects of the radiomic workflow, namely tumor segmentation, feature extraction, analysis, and classification. We evaluated data from 121 patients with brain tumors (Grade II, n = 77; Grade III, n = 44) from The Cancer Imaging Archive, and 744 radiomic features were obtained by applying low sub-band and high sub-band 3D wavelet transform filters to the 3D tumor images. Quantitative values were statistically analyzed with MannWhitney U tests and 126 radiomic features with significant statistical properties were selected in eight different wavelet filters. Classification performances of 3D wavelet transform filter groups were measured using accuracy, sensitivity, F1 score, and specificity values using the deep learning classifier model. The proposed model was highly effective in grading gliomas with 96.15% accuracy, 94.12% precision, 100% recall, 96.97% F1 score, and 98.75% Area under the ROC curve. As a result, deep learning and feature selection techniques with wavelet transform filters can be accurately applied using the proposed method in glioma grade classification.


Sign in / Sign up

Export Citation Format

Share Document