Optimal speed control of DC motor using linear quadratic regulator and model predictive control

Author(s):  
Satyabrata Sahoo ◽  
Bidyadhar Subudhi ◽  
Gayadhar Panda
2014 ◽  
Vol 622 ◽  
pp. 23-31
Author(s):  
T. Velayudham Narmadha ◽  
Chackaravarthy Baskaran ◽  
K. Sivakumar

-In this paper , performance of fuzzy PD , fuzzy PI , fuzzy PD+I , fuzzy PID controllers are evaluated and compared. This paper also describes the speed control based on Linear Quadratic Regulator (LQR) technique. The comparison is based on their ability of controlling the speed of DC motor, which merely focuses on performance index of the controllers, and also time domain specifications such as rise time, settling time and peak overshoot. The controller is modelled using MATLAB software, the simulation results shows that the fuzzy PID controllers are the best performing candidates in all aspects but it as higher overshoot and IAE in comparison with optimal LQR. The Fuzzy PI controller exhibited null offset but suffers from poor stability and peak overshoot, whereas the fuzzy PD controller has fast rise time, with no overshoots but the IAE is much greater. Thus, the comparative analysis recommends fuzzy PID controller but it is usually associated with complicated rule base and tedious tuning. To circumvent these problems, the proposed LQR controller gives better performance than the other controllers.


2020 ◽  
Vol 34 (04) ◽  
pp. 3545-3552
Author(s):  
Yiding Chen ◽  
Xiaojin Zhu

We describe an optimal adversarial attack formulation against autoregressive time series forecast using Linear Quadratic Regulator (LQR). In this threat model, the environment evolves according to a dynamical system; an autoregressive model observes the current environment state and predicts its future values; an attacker has the ability to modify the environment state in order to manipulate future autoregressive forecasts. The attacker's goal is to force autoregressive forecasts into tracking a target trajectory while minimizing its attack expenditure. In the white-box setting where the attacker knows the environment and forecast models, we present the optimal attack using LQR for linear models, and Model Predictive Control (MPC) for nonlinear models. In the black-box setting, we combine system identification and MPC. Experiments demonstrate the effectiveness of our attacks.


Sign in / Sign up

Export Citation Format

Share Document