An adaptable compact thermal model for BGA packages

Author(s):  
Ming Xie ◽  
Kok Chuan Toh ◽  
D. Pinjala
Keyword(s):  
1989 ◽  
Vol 50 (C2) ◽  
pp. C2-237-C2-243 ◽  
Author(s):  
H. VOIT ◽  
E. NIESCHLER ◽  
B. NEES ◽  
R. SCHMIDT ◽  
CH. SCHOPPMANN ◽  
...  

Author(s):  
Jim Colvin ◽  
Timothy Hazeldine ◽  
Heenal Patel

Abstract The standard requirement for FA Engineers needing to remove components from a board, prior to decapsulation or sample preparation, is shown to be greatly reduced, by the methods discussed here. By using a mechanical selected area preparation system with an open-design it is possible to reach all required areas of a large printed circuit board (PCB) or module to prepare a single component ‘in situ’. This makes subsequent optical or electrical testing faster and often more convenient to accomplish. Electronic End-pointing and 3D curvature compensation methods can often be used in parallel with sample prep techniques to further improve the consistency and efficacy of the decapsulation and thinning uniformity and final remaining silicon thickness (RST). Board level prep eliminates the worry of rework removal of BGA packages and the subsequent risk of damage to the device. Since the entire board is mounted, the contamination is restricted to the die surface and can be kept from the underside ball connections unlike current liquid immersion methods of package thinning or delayering. Since the camera is in line with the abrasion interface, imaging is real time during the entire milling and thinning process. Recent advances in automated tilt-table design have meant that a specific component’s angular orientation can be optimized for sample preparation. Improved tilt table technology also allows for improved mounting capability for boards of many types and sizes. The paper describes methods for decapsulation, thinning and backside polishing of a part ‘in situ’ on the polishing machine and allows the system to operate as a probe station for monitoring electrical characteristics while thinning. Considerations for designing board-level workholders are described – for boards that that are populated with components on one or even both sides. Using the techniques described, the quality of sample preparation and control is on a par with the processing of single package-level devices.


Author(s):  
Dima A. Smolyansky

Abstract The visual nature of Time Domain Reflectometry (TDR) makes it a very natural technology that can assist with fault location in BGA packages, which typically have complex interweaving layouts that make standard failure analysis techniques, such as acoustic imaging and X-ray, less effective and more difficult to utilize. This article discusses the use of TDR for package failure analysis work. It analyzes in detail the TDR impedance deconvolution algorithm as applicable to electronic packaging fault location work, focusing on the opportunities that impedance deconvolution and the resulting true impedance profile opens up for such work. The article examines the TDR measurement accuracy and the comparative package failure analysis, and presents three main considerations for package failure analysis. It also touches upon the goal and the task of the failure analysts and TDR's specific signatures for the open and short connections.


1982 ◽  
Author(s):  
William H. Highter ◽  
Frederick Carlson

Sign in / Sign up

Export Citation Format

Share Document