scholarly journals A power data driven energy-cost-aware production scheduling method for sustainable manufacturing at the unit process level

Author(s):  
Xu Gong ◽  
Toon De Pessemier ◽  
Wout Joseph ◽  
Luc Martens
2016 ◽  
Vol 113 ◽  
pp. 508-522 ◽  
Author(s):  
Xu Gong ◽  
Toon De Pessemier ◽  
Wout Joseph ◽  
Luc Martens

Author(s):  
Duck Bong Kim ◽  
Swee Leong ◽  
Chin-Sheng Chen

Sustainable manufacturing has become an emerging environmental, economic, societal, and technological challenge to the industry, the academia, and the government entities. Numerous research and development (R&D) efforts have been launched, and many global and domestic efforts have been initiated toward a long-term sustainable world. This paper provides an overview of R&D efforts in the measurement of manufacturing sustainability, based on an intensive literature search. It focuses on sustainability metrics that apply to unit machining processes for discrete part manufacturing. The authors present results from assessing the scope of indicators that exist for sustainability measurement in general, with a quick visit to the taxonomy of manufacturing activities and different classifications of existing SM metrics by unit machining processes. Most metrics at the unit machining level were developed to measure environmental impacts with respect to energy, materials, water, wastes, and air emissions, while a relatively smaller effort was developed to gauge societal or economic impacts. We report on an analysis of energy metrics available for various unit machining processes at the sub-device and sub-unit process level.


2012 ◽  
Vol 190-191 ◽  
pp. 156-159
Author(s):  
Jian Qing Chen

This paper is under the research background of a switch machine production enterprise informatization projects, and the production schedule is mainly based on customer orders and sales forecasts. This paper mainly studies the combination of similar order processing sheets according to the similarity of types and specifications of products in an order processing sheet, and the experience of master production scheduling personnel, to generate the master production scheduling methods and techniques. Finally, studies the material requirements planning methods based on nested components, focusing on the configuration of parts and components of such products in the product configuration.


2020 ◽  
Vol 2020 (0) ◽  
pp. S14202
Author(s):  
Takeru DOAN ◽  
Satoshi NAGAHARA ◽  
Takafumi CHIDA ◽  
Junichi KATSUBE ◽  
Tooru ADACHI ◽  
...  

Author(s):  
Xufeng Yao ◽  
Zeyi Sun ◽  
Lin Li ◽  
Hua Shao

The expenses associated with maintenance activities and energy consumption account for a large portion of the total operation cost in manufacturing plants. Therefore, effective methods that can be used for smart maintenance decision-making and energy management to reduce the costs of these two sections and improve the competitiveness of manufacturing enterprise are of high interests to industry. Many efforts focusing on maintenance decision-making and energy management have been dedicated. However, most of the existing research focusing on these two topics has been conducted separately, very little work has been done from a joint perspective that considers the benefits from both manufacturing machine reliability improvement and energy cost reduction. In this paper, a joint maintenance and energy management method is proposed to identify the maintenance actions considering energy cost as well as other equipment health metrics. A numerical case based on a section of an automotive assembly line is used to illustrate the potential benefits of the proposed approach.


Author(s):  
N.Sujith Prasanna ◽  
Dr.J.Nagesh Kumar

Energy cost is significant in many of the manufacturing activities. The efficiency of energy use is quiet low as there are substantial visible and hidden losses. Visible losses can be easily identified and corrective action can be taken. However hidden and indirect losses form a sizeable portion of the losses. Identifying these losses is not easy and requires an integrated approach which includes thorough study of process, operations and their interactions with energy use. Industries across sectors have implemented lean management principles which target various wastes occurring in the plant. This paper discusses case studies which highlight the exploitation of lean tools as a means for unearthing hidden energy saving potential that often go unnoticed. In addition to the energy savings which results in improved profits and competitiveness, the approach also aids the industry to pursue a path of sustainable manufacturing.


2021 ◽  
Vol 1 (2) ◽  
pp. 46-51
Author(s):  
Dwi Ayu Lestari, Vikha Indira Asri

Scheduling is defined as the process of sequencing the manufacture of a product as a whole on several machines. All industries need proper scheduling to manage the allocation of resources so that the production system can run quickly and precisely as of it can produce optimal product. PT. Sari Warna Asli Unit V is one of the companies that implements a make to order production system with the FCFS system. Thus, scheduling the production process at this company is also known as job shop production scheduling. The methods used in this research are the CDS method, the EDD method and the FCFS method. The purpose of this research is to minimize the production time and determine the best method that can be applied to the company. The results of this research showed that the makespan obtained in the company's scheduling system with FCFS rules was 458 minutes, and the results of scheduling using the CDS method obtained a makespan value of 329 minutes, then the best production scheduling method that had the smallest makespan value was the CDS method.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Philip Odonkor ◽  
Kemper Lewis

Abstract The flexibility afforded by distributed energy resources in terms of energy generation and storage has the potential to disrupt the way we currently access and manage electricity. But as the energy grid moves to fully embrace this technology, grid designers and operators are having to come to terms with managing its adverse effects, exhibited through electricity price volatility, caused in part by the intermittency of renewable energy. With this concern however comes interest in exploiting this price volatility using arbitrage—the buying and selling of electricity to profit from a price imbalance—for energy cost savings for consumers. To this end, this paper aims to maximize arbitrage value through the data-driven design of optimal operational strategies for distributed energy resources (DERs). Formulated as an arbitrage maximization problem using design optimization principles and solved using reinforcement learning, the proposed approach is applied toward shared DERs within multi-building residential clusters. We demonstrate its feasibility across three unique building clusters, observing notable energy cost reductions over baseline values. This highlights a capability for generalized learning across multiple building clusters and the ability to design efficient arbitrage policies for energy cost minimization. The scalability of this approach is studied using two test cases, with results demonstrating an ability to scale with relatively minimal additional computational cost, and an ability to leverage system flexibility toward cost savings.


Sign in / Sign up

Export Citation Format

Share Document