Radio map upscaling - adding antennas in an indoor localization scenario

Author(s):  
Roland Stenzl ◽  
Stefan Wilker ◽  
Thilo Sauter ◽  
TU Wien ◽  
Anetta Nagy ◽  
...  
2015 ◽  
Vol 14 (5) ◽  
pp. 1031-1043 ◽  
Author(s):  
Sameh Sorour ◽  
Yves Lostanlen ◽  
Shahrokh Valaee ◽  
Khaqan Majeed

2021 ◽  
Author(s):  
liye zhang ◽  
Zhuang Wang ◽  
Xiaoliang Meng ◽  
Chao Fang ◽  
Cong Liu

Abstract Recent years have witnessed a growing interest in using WLAN fingerprint-based method for indoor localization system because of its cost effectiveness and availability compared to other localization systems. In order to rapidly deploy WLAN indoor positioning system, the crowdsourcing method is applied to alternate the traditional deployment method. In this paper, we proposed a fast radio map building method utilizing the sensors inside the mobile device and the Multidimensional Scaling (MDS) method. The crowdsourcing method collects RSS and sensor data while the user is walking along a straight line and computes the position information using the sensor data. In order to reduces the noise in the location space of the radio map, the Short Term Fourier Transform (STFT) method is used to detect the usage mode switching to improve the step determination accuracy. When building a radio map, much fewer RSS values are needed using the crowdsourcing method compared to conventional methods, which lends greater influence to noises and erroneous measurements in RSS values. Accordingly, an imprecise radio map is built based on these imprecise RSS values. In order to acquire a smoother radio map and improve the localization accuracy, the MDS method is used to infer an optimal RSS value at each location by exploiting the correlation of RSS values at nearby locations. Experimental results show that the expected goal is achieved by the proposed method.


Author(s):  
Jie Wang ◽  
Qinghua Gao ◽  
Hongyu Wang ◽  
Hongyang Chen ◽  
Minglu Jin

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2818
Author(s):  
Ruolin Guo ◽  
Danyang Qin ◽  
Min Zhao ◽  
Xinxin Wang

The crowdsourcing-based wireless local area network (WLAN) indoor localization system has been widely promoted for the effective reduction of the workload from the offline phase data collection while constructing radio maps. Aiming at the problem of the diverse terminal devices and the inaccurate location annotation of the crowdsourced samples, which will result in the construction of the wrong radio map, an effective indoor radio map construction scheme (RMPAEC) is proposed based on position adjustment and equipment calibration. The RMPAEC consists of three main modules: terminal equipment calibration, pedestrian dead reckoning (PDR) estimated position adjustment, and fingerprint amendment. A position adjustment algorithm based on selective particle filtering is used by RMPAEC to reduce the cumulative error in PDR tracking. Moreover, an inter-device calibration algorithm is put forward based on receiver pattern analysis to obtain a device-independent grid fingerprint. The experimental results demonstrate that the proposed solution achieves higher localization accuracy than the peer schemes, and it possesses good effectiveness at the same time.


Author(s):  
Liye Zhang ◽  
Zhuang Wang ◽  
Xiaoliang Meng ◽  
Chao Fang ◽  
Cong Liu

AbstractRecent years have witnessed a growing interest in using WLAN fingerprint-based method for indoor localization system because of its cost-effectiveness and availability compared to other localization systems. In order to rapidly deploy WLAN indoor localization system, the crowdsourcing method is applied to alternate the traditional deployment method. In this paper, we proposed a fast radio map building method utilizing the sensors inside the mobile device and the Multidimensional Scaling (MDS) method. The crowdsourcing method collects RSS and sensor data while the user is walking along a straight line and computes the position information using the sensor data. In order to reduce the noise in the location space of the radio map, the short-term Fourier transform (STFT) method is used to detect the usage mode switching to improve the step determination accuracy. When building a radio map, much fewer RSS values are needed using the crowdsourcing method compared to conventional methods, which lends greater influence to noises and erroneous measurements in RSS values. Accordingly, an imprecise radio map is built based on these imprecise RSS values. In order to acquire a smoother radio map and improve the localization accuracy, the MDS method is used to infer an optimal RSS value at each location by exploiting the correlation of RSS values at nearby locations. Experimental results show that the expected goal is achieved by the proposed method.


Author(s):  
Liye Zhang ◽  
Shahrokh Valaee ◽  
Yu Bin Xu ◽  
Lin Ma ◽  
Farhang Vedadi

Indoor positioning based on the received signal strength (RSS) of the WiFi signal has become the most popular solution for indoor localization. In order to realize the rapid deployment of indoor localization systems, solutions based on crowdsourcing have been proposed. However, compared to conventional methods, crowdsourced RSS values are more erroneous and can result in large localization errors. To mitigate the negative effect of the erroneous measurements, a graph-based semi-supervised learning (G-SSL) method is used to exploit the correlation between the RSS values at nearby locations to estimate an optimal RSS value at each location. Before using the G-SSL method, the Linear Regression (LR) algorithm is proposed to solve the device diversity problem in crowdsourcing system. Since the spatial distribution of the APs is sparse, the Compressed Sensing (CS) method is applied to precisely estimate the location of the APs. Based on the location of the APs and a simple signal propagation model, the RSS difference between different locations is calculated and used as an additional constraint to improve the performance of G-SSL. Furthermore, to exploit the sparsity of the weights used in the G-SSL, we use the CS method to reconstruct these weights more accurately and make a further improvement on the performance of the G-SSL. Experimental results show improved results in terms of the smoothness of the radio map and the localization accuracy.


Sign in / Sign up

Export Citation Format

Share Document