Microwave Remote Sensing Techniques, A Survey

1977 ◽  
Author(s):  
M. Vogel

Monitoring of snow and ice is of importance for meteorological and climate research and applications, for hydrological purposes and for navigation and offshore activity in polar regions. For some of these applications long-term monitoring on a mesoscale and a synoptic scale is sufficient, whereas other applications require short-term observation on a mesoscale. This applies especially to forecasting of sea ice conditions, for instance. In the latter cases microwave remote sensing is the only technique that may deliver reliable and timely data irrespective of light, weather and cloud conditions. In the polar regions, this feature is of utmost importance. All known microwave remote-sensing techniques have demonstrated their applicability in polar regions, in particular in connection with observations of sea ice. It has also been shown that a combination of simultaneously acquired data from different sensors may be of advantage in parameter retrieval. This paper reviews the monitoring requirements and the microwave techniques available for this purpose with a view to snow and sea ice research and applications.


2009 ◽  
Vol 33 (4) ◽  
pp. 457-473 ◽  
Author(s):  
K. Anderson ◽  
H. Croft

Remote sensing is now in a strong position to provide meaningful spatial data for use in soil science investigations. In the last 10 years, advancements in remote sensing techniques and technologies have given rise to a wealth of exciting new research findings in soil-related disciplines. This paper provides a critical insight into the role played by remote sensing in this field, with a specific focus on soil surface monitoring. Two key soil properties are considered in this review, soil surface roughness and moisture, because these two variables have benefited most from recent cutting-edge advances in remote sensing. Of note is the fact that the major recent advancements in spatial assessment of soil structure have emerged from optical remote sensing, while the soil moisture community has benefited from advancements in microwave systems, justifying the focus of this paper in these specific directions. The paper considers the newest techniques within active, passive, optical and microwave remote sensing and concludes by considering future challenges, multisensor approaches and the issue of scale — which is a key cross-disciplinary research question of relevance to soil scientists and remote sensing scientists alike.


Sign in / Sign up

Export Citation Format

Share Document