Full Wave Boundary Integral Analysis of Arbitrary Integrated Transmission Lines: Origin and Avoidance of Spurious Solutions

Author(s):  
Werner Schroeder ◽  
Ingo Wolff
2012 ◽  
Vol 571 ◽  
pp. 721-724
Author(s):  
Cai Peng

A miniature ultra-wideband (UWB) bandpass filter using three-quarters wavelength resonators is presented in this paper. Direct-connected feed method is employed between the input/output ports and the resonators in order to overcome the shortcomings due to the gap-coupled feed method and produce two transmission zeros in the lower and upper stopbands. On the other hand, two quarter-wavelength matching transmission lines are introduced to the input/output ports to improve the reflection loss characteristic in the passband of the filter. In addition, the resonators are folded to be open ring structures, which are more miniaturized than the conventional linear structure. As a consequence, the filter is compact in size and exhibits good performance. The filter is successfully realized in theory and verified by full wave EM simulation, and simulated frequency response results show that the fabricated filter has an insertion loss of better than 1dB in the passband and two rejections of greater than 25dB in most of the stopbands.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Mohammad Alibakhshi Kenari

A variety of antennas have been engineered with MTMs and MTM-inspired constructs to improve their performance characteristics. This report describes the theory of MTMs and its utilization for antenna's techniques. The design and modeling of two MTM structures withε-μconstitutive parameters for patch antennas are presented. The framework presents two novel ultrawideband (UWB) shrinking patch antennas filled with composite right-/left-handed transmission line (CRLH-TL) structures. The CRLH-TL is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. The CRLH-TL structures enhance left-handed (LH) characteristics which enable size reduction and large frequency bandwidth. The large frequency bandwidth and good radiation properties can be obtained by adjusting the dimensions of the patches and CRLH-TL structures. This contribution demonstrates the possibility of reducing the size of planar antennas by using LH-transmission lines. Two different types of radiators are investigated—a planar patch antenna composed of fourO-formed unit cells and a planar patch antenna composed of sixO-shaped unit cells. A CRLH-TL model is employed to design and compare these two approaches and their realization with a varying number ofL-Cloaded unit cells. Two representative antenna configurations have been selected and subsequently optimized with full-wave electromagnetic analysis. Return loss and radiation pattern simulations of these antennas prove the developed concept.


Frequenz ◽  
2010 ◽  
Vol 64 (3-4) ◽  
Author(s):  
Kim Ho Yeap ◽  
Choy Yoong Tham ◽  
Kee Choon Yeong ◽  
Eng Hock Lim

Sign in / Sign up

Export Citation Format

Share Document