attenuation constant
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 11)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 71 (6) ◽  
pp. 730-736
Author(s):  
S. Harikrishnan ◽  
Kamlesh Kumar ◽  
V. Venkateswara Rao ◽  
Ajay Misra

This paper discusses the experimental determination of explosive shock attenuation parameters of four different polymers viz., Teflon, Phenol formaldehyde, Polyethylene foam and Polypropylene foam. These polymers are candidate materials for waveshapers in shaped charge warheads. Cylindrical specimens of the polymer materials were subjected to explosive shock loading by the detonation of RDX:Wax (95:5). Shock arrival time was measured using piezo-wafers positioned at known spatial intervals in the specimens. Initial shock velocity, stabilised shock velocity and attenuation constant were determined. These parameters are essential for the design of waveshapers. Foams have better shock attenuating properties compared to solids due to their cellular structure. Polypropylene foam has the highest shock attenuating characteristic among the four materials studied.


2021 ◽  
Vol 26 (3) ◽  
pp. 212-220
Author(s):  
Hui Guo ◽  
Yaru Zhang ◽  
Tao Yuan ◽  
Pei Sun Qian ◽  
Qian Cheng ◽  
...  

Wave propagation control in piezoelectric meta-materials has been extensively investigated in recent years due to its significant effects on elastic wave attenuation. In this work, a novel piezoelectric meta-material rod connected to three configurations of shunting circuits is proposed for broad band gaps. The numerical model is constructed to predict the band gap, attenuation constant, and vibration transmission. For larger attenuation within the band gaps, the shunting circuit parameters are optimized with a genetic algorithm. The result shows that the structure with the optimized parameters provides prominent vibration control ability. Both the attenuation constant and the width of the band gaps are enlarged.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 206
Author(s):  
Pilar Castillo-Tapia ◽  
Kwinten Van Gassen ◽  
Qiao Chen ◽  
Francisco Mesa ◽  
Zvonimir Sipus ◽  
...  

We propose a circular twist-symmetric dielectric waveguide that is polarization-selective. In the practical implementation of optical fibers, a selective circular polarization is more convenient than its linearly polarized counterpart where previous knowledge of the emitted polarization from the transmitter is unknown. The analysis of the waveguide was conducted with three methods: an eigenmode approach, simulation of a truncated structure, and the so-called multimodal transfer-matrix method (MMTMM). The presented simulations demonstrate that the operational band can be manipulated by tuning the parameters of the structure. Furthermore, the MMTMM allows for a direct and accurate calculation of the attenuation constant of the rejected circular polarization.


2020 ◽  
Vol 10 (3) ◽  
pp. 962
Author(s):  
Hao Yu ◽  
Kuang Zhang ◽  
Xumin Ding ◽  
Qun Wu

In this paper, a novel dual-beam leaky-wave antenna (LWA) based on squarely modulated reactance surface (SquMRS) is proposed. The equivalent transmission lines model is utilized to characterize the field distributions of surface wave guided by the SquMRS. The calculated dispersion characteristics of SquMRS are verified by the simulated results, and it is demonstrated that SquMRS exhibits a more flexible control of phase constant and attenuation constant compared with traditional sinusoidally modulated reactance surface (SinMRS), which means SquMRS has a great potential for near-field focusing and far-field beam shaping. On this basis, a versatile method, based on a superposition of individual modulation patterns, was used to generated two beams with almost identical gain at 8.5 GHz. The measured results show that the gains are 10 dBi and 8.2 dBi at θ1 = −30° and θ2 = 18°, respectively, and the radiation efficiency is 83%, which shows good agreement with the simulated results.


2020 ◽  
Vol 4 (10) ◽  
pp. 3013-3021
Author(s):  
Qi Li ◽  
Zheng Zhang ◽  
Xiaochen Xun ◽  
Fangfang Gao ◽  
Xuan Zhao ◽  
...  

M-Co/RGO nanocomposites with well-matched impedance matching and high attenuation constant are developed and enhanced microwave absorption was obtained through the strategy of synergistic engineering of dielectric and magnetic losses.


2019 ◽  
Vol 17 ◽  
pp. 71-75
Author(s):  
Thomas Vaupel ◽  
Claudius Löcker

Abstract. A substrate integrated waveguide (SIW) with transverse slots on the top plane can be used to design an effective leaky-wave antenna with good frequency beam-scanning and platform integration capability. For a main beam near end-fire, the phase constant of the radiating wave must be near to the free space wavenumber or slightly larger. In this context, the modified Hansen-Woodyard condition gives an optimum phase constant to maximize the directivity at end-fire. For the analysis of the wave propagation we have implemented a modal analysis for rectangular waveguides with transverse slots. Near end-fire, three types of modal solutions exists, a leaky improper mode, a surface wave mode and a proper waveguide mode. The leaky mode can reach phase constants larger than the free space wavenumber to fulfill the Hansen-Woodyard condition, but loses strongly its physical significance in this slow wave region, thus the excitation of the leaky-wave becomes negligible there, whereas the proper waveguide mode is dominant but exhibits only a negligible radiation loss leading to a strong drop of the antenna efficiency. Therefore, the optimum efficiency of 86 % for maximizing the gain as proposed in the literature cannot be reached with this kind of leaky wave antenna. But it will be shown in this contribution by analyzing antenna structures with finite aperture lengths, that the efficiency can reach nearly 100 % if the phase constant of the leaky-wave meets exactly the free space wavenumber (ordinary end-fire condition) and the aperture length is adjusted with regard to the attenuation constant of the leaky-wave from the modal analysis. For a given aperture length, a procedure is outlined to adjust the attenuation constant in several steps at the desired ordinary end-fire frequency to reach maximum gain and efficiency.


Sign in / Sign up

Export Citation Format

Share Document