Analysis and design of a microstrip patch antenna for harmonic tuning in a high-efficiency integrated microwave transmitter

Author(s):  
Paolo Baccarelli ◽  
Paolo Burghignoli ◽  
Fabrizio Frezza ◽  
Alessandro Galli ◽  
Paolo Lampariello ◽  
...  
2018 ◽  
Vol 7 (2.6) ◽  
pp. 168
Author(s):  
Madhukant Patel ◽  
Veerendra Singh Jadaun ◽  
Kanhiya Lal ◽  
Piyush Kuchhal

This paper presents design a High Gain Small Size Microstrip Patch Antenna for X-Band applications such as Moving target RADAR sensor, Motion detector, Microwave camera, Ground Penetration RADAR sensors, wall penetration scanners and many medical applications. Now we have to selected circular geometry of micro strip patch antenna because circular geometry overcomes edge effect of antenna. The proposed antenna is designed to operate for X-band at the centre frequency of 10 GHz. The proposed Circular patch antenna is compact and easy to body mount with a high efficiency. The compactness makes it a better choice as compare with other antenna in the X-band. The proposed antenna shows a very sharp return loss of -46 dB at 10 GHz having narrow pattern with a good gain of 4.7 dBi. This enables its use in high directional applications. The paper represents the designing steps, and the simulation result obtained. The software used here for this circular shaped microstrip antenna is IE3D. Various parameters such as gain, power, radiation pattern, and S11 of the antenna are mentioned.


Author(s):  
Raghuraj Sharan Saxena ◽  
Rishik Shrivastava ◽  
Ritu Muchhal ◽  
Rahul Tiwari

As the wireless technology is advancing rapidly, there is also an increasing demand for high data rates and large bandwidth. So, the new generation technology (5G) is proposed. For this purpose, there is a need of advanced antenna design, and here the authors are using a microstrip patch antenna, which is highly preferred due to low profile, simple manufacturing, and ease of feeding. This research presents the design of 28.132 GHz microstrip patch antenna. We have used FR-4 substrate here is which has a dielectric constant Er= 4.3 and a thickness of 0.5 mm. The dimensions of patch are 4.8×6.8×0.5mm including the ground plane. It has a bandwidth of 1.613 GHz, return loss of -19.175 dB, VSWR 1.24 dB, VSWR as 1.24 dB, gain as 3.82 dB and total efficiency of -3.116 dB.. The designing and simulation of this antenna is performed by CST studio suite software and various specifications such as S-parameter, VSWR, and radiation pattern is discussed. Furthermore, comparative analysis is done, which is indicating the variation of antenna parameters on varying the design dimensions.


2021 ◽  
Vol 11 (03) ◽  
pp. 01-11
Author(s):  
Chaitali Mukta ◽  
Mahfujur Rahman ◽  
Abu Zafor Md. Touhidul Islam

This paper presents the design of a compact circular microstrip patch antenna for WLAN applications which covers the band 5.15 to 5.825 GHz. The antenna is designed using 1.4mm thick FR-4 (lossy)substrate with relative permittivity 4.4 and a microstrip line feed is used. The radius of the circular patch is chosen as 7.62mm. To reduce the size and enhance the performance of the proposed antenna, a circular slot is loaded on circular patch and a square slot is etched on the ground plane of dimension 30mm×30mm. Design of the antenna is carried out using CST Microsoft Studio Sonimulation Software. The proposed antenna resonates at 5.5 GHz with a wider bandwidth of 702 MHz and it provides low return loss of -31.58 dB, good gain of 3.23 dB and directivity of 4.28 dBi and high efficiency of around 79% against the resonance frequency. The geometry of the proposed circular antenna with reduced size and its various performance parameters such as return loss, bandwidth, VSWR, gain, directivity, efficiency and radiation pattern plots are presented and discussed


Sign in / Sign up

Export Citation Format

Share Document