wide bandwidth
Recently Published Documents


TOTAL DOCUMENTS

1557
(FIVE YEARS 307)

H-INDEX

55
(FIVE YEARS 10)

Author(s):  
Dajiang Li ◽  
Ming-Chun Tang ◽  
Yang Wang ◽  
Kun-Zhi Hu ◽  
Richard W. Ziolkowski

Author(s):  
Zhi-Min Du ◽  
Sai-Wai Wong ◽  
Rui-Sen Chen ◽  
Yin Li ◽  
Lin-Ping Feng ◽  
...  

Energy ◽  
2022 ◽  
Vol 239 ◽  
pp. 122203
Author(s):  
Junlei Wang ◽  
Chengyun Zhang ◽  
Daniil Yurchenko ◽  
Abdessattar Abdelkefi ◽  
Mingjie Zhang ◽  
...  

Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yousra Ghazaoui ◽  
Mohammed EL Ghzaoui ◽  
Sudipta Das ◽  
BTP Madhav ◽  
Ali el Alami

Purpose This paper aims to present the design, fabrication and analysis of a wideband, enhanced gain 1 × 2 patch antenna array with a simple profile structure to meet the desired antenna traits, such as wide bandwidth, high gain and directional patterns expected for the upcoming fifth-generation (5G) wireless applications in the millimeter wave band. To enhance these parameters (bandwidth and gain), a new antenna geometry by using a T-junction power divider is presented. Design/methodology/approach The theory behind this paper is connected with advancements in the 5G communications related to antennas. The methodology used in this work is to design a high gain array antenna and to identify the best possible power divider to deliver the power in an optimized way. The design methodology adopts several steps like the selection of proper substrate material as per the design specification, size of the antenna as per the frequency of operation and application-specific environment condition. The simulation has been performed on the designed antenna in the electromagnetic simulation tool (high-frequency structure simulator [HFSS]), and optimization has been done with parametric analysis, and then the final array antenna model is proposed. The proposed array contains 2-patch elements excited by one port adapted to 50 Ω through a T-junction power divider. The 1 × 2 array configuration with the suggested geometry helps to improve the overall gain of the antenna, and the implementation of the T-junction power divider provides enhanced bandwidth. The proposed array designed using a 1.6 mm thick flame retardant substrate occupies a compact area of 14 × 12.14 mm2. Findings The prototype of the array antenna is fabricated and measured to validate the design concept. A good agreement has been reached between the measured and simulated antenna parameters. The measured results confirm its wideband and high gain characteristics, covering 24.77–28.80 GHz for S11= –10 dB with a peak gain of about 15.16 dB at 27.65 GHz. Originality/value The proposed antenna covers the bandwidth requirements of the 26 GHz n258 band (24.25–27.50 GHz) to be deployed in the UK and Europe. The suggested antenna structure also covers the federal communications commission (FCC)-regulated 28 GHz n261 band (27.5–28.35 GHz) to be deployed in America and Canada. The low profile, compact size, simple structure, wide bandwidth, high gain and desired directional radiation patterns confirm the applicability of the suggested array antenna for the upcoming 5 G wireless systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Mohammad Monirujjaman Khan ◽  
Junayed Hossain ◽  
Kaisarul Islam ◽  
Nazmus Sadat Ovi ◽  
Md. Nakib Alalm Shovon ◽  
...  

In this study, the design of a compact and novel millimeter wave cotton textile-based wearable antenna for body-centric communications in healthcare applications is presented. The free space and on-body antenna performance parameters for the proposed antenna at 60 GHz are investigated and analyzed. The antenna is based on a 1.5 mm thick cotton substrate and has an overall dimension of 7.0 × 4.5 × 1.5 mm3. In free space, the antenna is resonant at 60 GHz and achieves a wide impedance bandwidth. The maximum gain at this resonant frequency is 6.74 dBi, and the radiation efficiency is 93.30%. Parametric changes were carried out to study the changes in the resonant frequency, gain, and radiation efficiency. For body-centric communications, the antenna was simulated at 5 different distances from a three-layer human torso-equivalent phantom. The radiation efficiency dropped by 24% and gradually increased with the gap distance. The antenna design was also analyzed by using 10 different textile substrates for both free space and on-body scenarios. The major benefits of the antenna are discussed as follows. Compared to a previous work, the antenna is very efficient, compact, and has a wide bandwidth. In BCWCs for e-health applications, the antenna needs to be very compact due to the longer battery life, and it has to have a wide bandwidth for high data rate communication. Since the antenna will be wearable with a sensor system, the shape of the antenna needs to be planar, and it is better to design the antenna on a textile substrate for integration into clothes. The antenna also needs to show high gain and efficiency for power-efficient communication. This proposed antenna meets all these criteria, and hence, it will be a good candidate for BCWCs in e-health applications.


2021 ◽  
Vol 13 (24) ◽  
pp. 5008
Author(s):  
Xuebo Zhang ◽  
Peixuan Yang

When the multi-receiver synthetic aperture sonar (SAS) works with a wide-bandwidth signal, the performance of the range-Doppler (R-D) algorithm is seriously affected by two approximation errors, i.e., point target reference spectrum (PTRS) error and residual quadratic coupling error. The former is generated by approximating the PTRS with the second-order term in terms of the instantaneous frequency. The latter is caused by neglecting the cross-track variance of secondary range compression (SRC). In order to improve the imaging performance in the case of wide-bandwidth signals, an improved R-D algorithm is proposed in this paper. With our method, the multi-receiver SAS data is first preprocessed based on the phase center approximation (PCA) method, and the monostatic equivalent data are obtained. Then several sub-blocks are generated in the cross-track dimension. Within each sub-block, the PTRS error and residual quadratic coupling error based on the center range of each sub-block are compensated. After this operation, all sub-blocks are coerced into a new signal, which is free of both approximation errors. Consequently, this new data is used as the input of the traditional R-D algorithm. The processing results of simulated data and real data show that the traditional R-D algorithm is just suitable for an SAS system with a narrow-bandwidth signal. The imaging performance would be seriously distorted when it is applied to an SAS system with a wide-bandwidth signal. Based on the presented method, the SAS data in both cases can be well processed. The imaging performance of the presented method is nearly identical to that of the back-projection (BP) algorithm.


Sign in / Sign up

Export Citation Format

Share Document