The Texas high school initiative aims at STEM education reform: Texas Tech University T-STEM Center—Putting the “E” in K-12 STEM education

Author(s):  
Dean Fontenot ◽  
John R. Chandler ◽  
Susan Talkmitt ◽  
Kaycie Sullivan
2016 ◽  
Vol 15 (4) ◽  
pp. es8 ◽  
Author(s):  
Amy B. Mulnix

Discipline-based education research (DBER) publications are opportunities for professional development around science, technology, engineering, and mathematics (STEM) education reform. Learning theory tells us these publications could be more impactful if authors, reviewers, and editors pay greater attention to linking principles and practice. This approach, which considers faculty as learners and STEM education reform as content, has the potential to better support faculty members because it promotes a deeper understanding of the reasons why a pedagogical change is effective. This depth of understanding is necessary for faculty members to successfully transfer new knowledge to their own contexts. A challenge ahead for the emergent learning sciences is to better integrate findings from across sister disciplines; DBER reports can take a step in that direction while improving their usefulness for instructors.


2014 ◽  
Vol 114 (6) ◽  
pp. 257-257 ◽  
Author(s):  
Carla C. Johnson

2013 ◽  
pp. 401-421 ◽  
Author(s):  
Todd Campbell ◽  
Phil Seok Oh ◽  
Drew Neilson

It has been declared that practicing science is aptly described as making, using, testing, and revising models. Modeling has also emerged as an explicit practice in science education reform efforts. This is evidenced as modeling is highlighted as an instructional target in the recently released Conceptual Framework for the New K-12 Science Education Standards: it reads that students should develop more sophisticated models founded on prior knowledge and skills and refined as understanding develops. Reflecting the purpose of engaging students in modeling in science classrooms, Oh and Oh (2011) have suggested five modeling activities, the first three of which were based van Joolingen’s (2004) earlier proposal: 1) exploratory modeling, 2) expressive modeling, 3) experimental modeling, 4) evaluative modeling, and 5) cyclic modeling. This chapter explores how these modeling activities are embedded in high school physics classrooms and how each is juxtaposed as concurrent instructional objectives and scaffolds a progressive learning sequence. Through the close examination of modeling in situ within the science classrooms, the authors expect to better explicate and illuminate the practices outlined and support reform in science education.


Sign in / Sign up

Export Citation Format

Share Document