An FDDI-based reconfigurable network for fault-tolerant real-time communications

Author(s):  
S. Kamat ◽  
Wei Zhao
Keyword(s):  
Author(s):  
Zhongjin Li ◽  
Victor Chang ◽  
Haiyang Hu ◽  
Hua Hu ◽  
Chuanyi Li ◽  
...  

2017 ◽  
Vol 26 (07) ◽  
pp. 1750111 ◽  
Author(s):  
Jie Wang ◽  
Jiwei Liu

The evolvable hardware (EHW) is widely used in the design of fault-tolerant system. Fault-tolerant system is really a real-time system, and the recovery time is necessary in fault detection and recovery. However, when applying EHW, real-time characteristic is usually ignored. In this paper, a fault-tolerant strategy based on EHW is proposed. The recovery time, predicted by the fault tree analysis (FTA), is considered as a constraint condition. A configuration library is set up in the design phase to accelerate the repair process of the anticipated faults. An evolvable algorithm (EA) based on similarity is applied to evolve the repair circuit for the unanticipated faults. When the library reaches the upper, the target system is reconfigured by the EA-repair technology. Extensive experiments are conducted to show that our method can improve the fault-tolerance of the system while satisfying the real-time requirement on FPGA platform. In a long run system, our method can keep a higher fault recovery rate.


2014 ◽  
Vol 548-549 ◽  
pp. 1326-1329
Author(s):  
Juan Jin ◽  
Qing Fan Gu

Against to the unsustainable problems of health diagnosis, fault location and fault tolerance mechanisms that existing in the current avionics applications, we proposed a fault-tolerant communication middleware which is based on time-triggered in this paper. This middleware is designed to provide a support platform for applications of the real-time based on communication middleware. From the communication middleware level and also combined with time-triggered mechanism and fault-tolerant strategy, it diagnoses the general faults first, and then routes them to the appropriate fault mechanism to process it. So the middleware completely separates fault-tolerant process from the application software functions.


1995 ◽  
Vol 44 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Fuxing Wang ◽  
K. Ramamritham ◽  
J.A. Stankovic

Sign in / Sign up

Export Citation Format

Share Document