A learning method of fuzzy inference rules by descent method

Author(s):  
H. Nomura ◽  
I. Hayashi ◽  
N. Wakami
Fuzzy Logic ◽  
1993 ◽  
pp. 465-475 ◽  
Author(s):  
Hiroyoshi Nomura ◽  
Isao Hayashi ◽  
Noboru Wakami

1996 ◽  
Vol 3 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Chinmoy Pal ◽  
Ichiro Hagiwara ◽  
Naoki Kayaba ◽  
Shin Morishita

A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 170 ◽  
Author(s):  
Saravanan Chandrasekaran ◽  
Vijay Bhanu Srinivasan ◽  
Latha Parthiban

The Quality of Service (QoS) is enforced in discovering an optimal web service (WS).The QoS is uncertain due to the fluctuating performance of WS in the dynamic cloud environment. We propose a Fuzzy based Bayesian Network (FBN) system for Efficient QoS prediction. The novel method comprises three processes namely Semantic QoS Annotation, QoS Prediction, and Adaptive QoS using cloud infrastructure. The FBN employs the compliance factor to measure the performance of QoS attributes and fuzzy inference rules to infer the service capability. The inference rules are defined according to the user preference which assists to achieve the user satisfaction. The FBN returns the optimal WSs from a set of functionally equivalent WS. The unpredictable and extreme access of the selected WS is handled using cloud infrastructure. The results show that the FBN approach achieves nearly 95% of QoS prediction accuracy when providing an adequate number of past QoS data, and improves the prediction probability by 2.6% more than that of the existing approach.  


Sign in / Sign up

Export Citation Format

Share Document