Hardware-in-the-loop neuro-based simulation for testing gas turbine engine control system

Author(s):  
A. Kumarin ◽  
A. Kuznetsov ◽  
G. Makaryants
2011 ◽  
Vol 14 (4) ◽  
pp. 52-56
Author(s):  
Seong-Jin Hong ◽  
Seung-Min Kim ◽  
Sim-Kyun Yook ◽  
Sam-Sik Nam

2004 ◽  
Vol 37 (6) ◽  
pp. 1049-1053
Author(s):  
A.S. Kulik ◽  
V.F. Symonov ◽  
S.N. Pasichnik ◽  
A.V. Komkov

Author(s):  
J. E. Bayati ◽  
R. M. Frazzini

The basic operating principles of an electronic digital computer gas turbine engine control system are presented. Closed loop turbine discharge temperature and speed controls have been implemented; their feasibility was demonstrated through hybrid digital/analog simulation and actual tests of a GE J85 turbojet engine through the start mode to maximum afterburner. Control mode description and results of the analysis and experimental runs are given in this paper.


Author(s):  
B. Githanjali ◽  
P. Shobha ◽  
K. S. Ramprasad ◽  
K. Venkataraju

A full authority digital engine control system (FADEC) has been configured for the marine gas turbine engine being developed at the Gas Turbine Research Establishment, Bangalore, India. This paper presents the development of a prototype FADEC for this aero-derivative marine gas turbine engine. A dual-redundant architecture, with two identical digital electronic control units (DECU) in an active-standby configuration, was chosen to provide the necessary reliability, availability and maintainability. The system provides automatic control of engine fuel flow and compressor variable geometry, without exceeding parameter limits, so as to control either the speed of the gas generator or the power turbine in order to meet the power demanded. While the control units incorporate hardware and software features to detect and accommodate faults, an independent electronic trip system was included as a part of the overall control system to handle those situations resulting in uncontrolled overspeeding or safety interlock requirements. Recognizing the global trend towards the use of commercial off the shelf (COTS) technology, the system was configured with industry proven hardware and software. In addition, a hydro-mechanical backup control provides limited operational capability in the event of electronic control failure.


Author(s):  
Amin Salehi ◽  
Morteza Montazeri-Gh

The turboshaft engine is the major component in the propulsion system of most marine vehicles, and proper control of its function as a sub-system in the propulsion system has a direct impact on the performance of the vehicle’s propulsion control system. The engine performance control is performed through the fuel control system. The fuel control system of a turboshaft gas turbine engine consists of two parts: electronic control unit and fuel control unit which is the actuator of the fuel control system. In this article, a hardware-in-the-loop simulation is presented for testing and verifying the performance of the fuel control unit. In the hardware-in-the-loop simulation, the fuel control unit in hardware form is tested in connection with the numerically simulated model of engine and electronic control unit. In this simulation, a Wiener model for the turboshaft engine is developed which is validated with the experimental data. Subsequently, a multi-loop fuel controller algorithm is designed for the engine and the parameters are optimized so that the time response and physical constraints are satisfied. In the next step, a state-of-the-art hydraulic test setup is built and implemented to perform the hardware-in-the-loop test. The test system contains personal and industrial computer, sensors, hydraulic components, and data acquisition cards to connect software and hardware parts to each other. In this hardware-in-the-loop simulator, a host–target structure is used for real-time simulation of the software models. The results show the effectiveness of hardware-in-the-loop simulation in fuel control unit evaluation and verify the steady and transient performance of the designed actuator.


1997 ◽  
Vol 30 (18) ◽  
pp. 67-71 ◽  
Author(s):  
Timofei Breikin ◽  
Valentin Arkov ◽  
Gennady Kulikov ◽  
Visakan Kadirkamanathan ◽  
Vijay Patel

Sign in / Sign up

Export Citation Format

Share Document