On Gas Turbine Engine and Control System Condition Monitoring

1997 ◽  
Vol 30 (18) ◽  
pp. 67-71 ◽  
Author(s):  
Timofei Breikin ◽  
Valentin Arkov ◽  
Gennady Kulikov ◽  
Visakan Kadirkamanathan ◽  
Vijay Patel
Author(s):  
Walter Brockett ◽  
Angelo Koschier

The overall design of and Advanced Integrated Propulsion System (AIPS), powered by an LV100 gas turbine engine, is presented along with major test accomplishments. AIPS was a demonstrator program that included design, fabrication, and test of an advanced rear drive powerpack for application in a future heavy armored vehicle (54.4 tonnes gross weight). The AIPS design achieved significant improvements in volume, performance, fuel consumption, reliability/durability, weight and signature reduction. Major components of AIPS included the recuperated LV100 turbine engine, a hydrokinetic transmission, final drives, self-cleaning air filtration (SCAF), cooling system, signature reduction systems, electrical and hydraulic components, and control systems with diagnostics/prognostics and maintainability features.


1974 ◽  
Author(s):  
H. Hiraki ◽  
K. Nakao ◽  
T. Nakayama ◽  
T. Miyamaru

A fuel control system for a prototype gas turbine with recuperator is described. The electronic fuel control was designed with the aid of a hybrid simulator. Its performance is verified on the bench test for a 600-bhp gas turbine engine with recuperator. Prediction of vehicle behavior and transmission requirements were made for a heavy-duty, 32-ton dump truck equipped wtih the 600-bhp gas turbine engine.


Author(s):  
Seonghee Kho ◽  
Jayoung Ki ◽  
Miyoung Park ◽  
Changduk Kong ◽  
Kyungjae Lee

This study is aim to be programmed the simulation which is available for real-time performance analysis so that is to be developed gas turbine engine’s condition monitoring system with analyzing difference between performance analysis results and measuring data from test cell. In addition, test cell created by this study have been developed to use following applications: to use for learning principals and mechanism of gas turbine engine in school, and to use performance test and its further research for variable operating conditions in associated institutes. The maximum thrust of the micro turbojet engine is 137 N (14 kgf) at 126,000 rpm of rotor rotational speed if the Jet A1 kerosene fuel is used. The air flow rate is measured by the inflow air speed of duct, and the fuel flow is measured by a volumetric fuel flowmeter. Temperatures and pressures are measured at the atmosphere, the compressor inlet and outlet and the turbine outlet. The thrust stand was designed and manufactured to measure accurately the thrust by the load cell. All measuring sensors are connected to a DAQ (Data Acquisition) device, and the logging data are used as function parameters of the program, LabVIEW. The LabVIEW is used to develop the engine condition monitoring program. The proposed program can perform both the reference engine model performance analysis at an input condition and the real-time performance analysis with real-time variables. By comparing two analysis results the engine condition can be monitored. Both engine performance analysis data and monitoring results are displayed by the GUI (Graphic User Interface) platform.


2011 ◽  
Vol 14 (4) ◽  
pp. 52-56
Author(s):  
Seong-Jin Hong ◽  
Seung-Min Kim ◽  
Sim-Kyun Yook ◽  
Sam-Sik Nam

1998 ◽  
Vol 31 (4) ◽  
pp. 161-165
Author(s):  
G.G. Kulikov ◽  
T.V. Breikin ◽  
V.Y. Arkov ◽  
P.J. Fleming

Sign in / Sign up

Export Citation Format

Share Document