scholarly journals Towards including batch services in models for DPDK-based virtual switches

Author(s):  
Zidong Su ◽  
Thomas Begin ◽  
Bruno Baynat
Keyword(s):  
2000 ◽  
Vol 32 (01) ◽  
pp. 284-313 ◽  
Author(s):  
Xiuli Chao ◽  
Masakiyo Miyazawa

In this paper we extend the notion of quasi-reversibility and apply it to the study of queueing networks with instantaneous movements and signals. The signals treated here are considerably more general than those in the existing literature. The approach not only provides a unified view for queueing networks with tractable stationary distributions, it also enables us to find several new classes of product form queueing networks, including networks with positive and negative signals that instantly add or remove customers from a sequence of nodes, networks with batch arrivals, batch services and assembly-transfer features, and models with concurrent batch additions and batch deletions along a fixed or a random route of the network.


1996 ◽  
Vol 33 (03) ◽  
pp. 858-869 ◽  
Author(s):  
Xiuli Chao ◽  
Michael Pinedo ◽  
Dequan Shaw

Consider a queueing network with batch services at each node. The service time of a batch is exponential and the batch size at each node is arbitrarily distributed. At a service completion the entire batch coalesces into a single unit, and it either leaves the system or goes to another node according to given routing probabilities. When the batch sizes are identical to one, the network reduces to a classical Jackson network. Our main result is that this network possesses a product form solution with a special type of traffic equations which depend on the batch size distribution at each node. The product form solution satisfies a particular type of partial balance equation. The result is further generalized to the non-ergodic case. For this case the bottleneck nodes and the maximal subnetwork that achieves steady state are determined. The existence of a unique solution is shown and stability conditions are established. Our results can be used, for example, in the analysis of production systems with assembly and subassembly processes.


1990 ◽  
Vol 22 (2) ◽  
pp. 433-455 ◽  
Author(s):  
Richard J. Boucherie ◽  
Nico M. Van Dijk

Reversible spatial birth-death processes are studied with simultaneous jumps of multi-components. A relationship is established between (i) a product-form solution, (ii) a partial symmetry condition on the jump rates and (iii) a solution of a deterministic concentration equation. Applications studied are reversible networks of queues with batch services and blocking and clustering processes such as those found in polymerization chemistry. As illustrated by examples, known results are hereby unified and extended. An expectation interpretation of the transition rates is included.


1998 ◽  
Vol 35 (01) ◽  
pp. 151-164
Author(s):  
Xiuli Chao ◽  
Shaohui Zheng

In this paper we consider a network of queues with batch services, customer coalescence and state-dependent signaling. That is, customers are served in batches at each node, and coalesce into a single unit upon service completion. There are signals circulating in the network and, when a signal arrives at a node, a batch of customers is either deleted or triggered to move as a single unit within the network. The transition rates for both customers and signals are quite general and can depend on the state of the whole system. We show that this network possesses a product form solution. The existence of a steady state distribution is also discussed. This result generalizes some recent results of Hendersonet al. (1994), as well as those of Chaoet al. (1996).


1990 ◽  
Vol 6 (1) ◽  
pp. 59-70 ◽  
Author(s):  
W. Henderson ◽  
C. E. M. Pearce ◽  
P. G. Taylor ◽  
N. M. van Dijk

1998 ◽  
Vol 35 (1) ◽  
pp. 151-164 ◽  
Author(s):  
Xiuli Chao ◽  
Shaohui Zheng

In this paper we consider a network of queues with batch services, customer coalescence and state-dependent signaling. That is, customers are served in batches at each node, and coalesce into a single unit upon service completion. There are signals circulating in the network and, when a signal arrives at a node, a batch of customers is either deleted or triggered to move as a single unit within the network. The transition rates for both customers and signals are quite general and can depend on the state of the whole system. We show that this network possesses a product form solution. The existence of a steady state distribution is also discussed. This result generalizes some recent results of Henderson et al. (1994), as well as those of Chao et al. (1996).


Sign in / Sign up

Export Citation Format

Share Document