V2G Applicable Electric Vehicle Chargers, Power Converters & Their Controllers: A Review

Author(s):  
Gorkem Berk Sahinler ◽  
Gokturk Poyrazoglu
Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 260
Author(s):  
Jon Anzola ◽  
Iosu Aizpuru ◽  
Asier Arruti

This paper focuses on the design of a charging unit for an electric vehicle fast charging station. With this purpose, in first place, different solutions that exist for fast charging stations are described through a brief introduction. Then, partial power processing architectures are introduced and proposed as attractive strategies to improve the performance of this type of applications. Furthermore, through a series of simulations, it is observed that partial power processing based converters obtain reduced processed power ratio and efficiency results compared to conventional full power converters. So, with the aim of verifying the conclusions obtained through the simulations, two downscaled prototypes are assembled and tested. Finally, it is concluded that, in case galvanic isolation is not required for the charging unit converter, partial power converters are smaller and more efficient alternatives than conventional full power converters.


2018 ◽  
Vol 3 (2) ◽  
pp. 102-110 ◽  
Author(s):  
Alessandro Soldati ◽  
◽  
Giorgio Pietrini ◽  
Matteo Dalboni ◽  
Carlo Concari ◽  
...  

2020 ◽  
Vol 6 (1) ◽  
pp. 60-74
Author(s):  
Ratil H Ashique

The electric vehicle (EV) charging systems employ dc-dc power converters as EV chargers. Currently, the expected high penetration of electric vehicle (EV) demands for the integration of the renewable energy sources (RES) into the electric vehicle charging system as a promising solution to cut down the load on the electrical grid. These systems interface with RES by implementing dc-dc power converters. Moreover, with the advent of high-power dc charging, the charging efficiency is largely dependent on the performance of the power converters. Hence, to improve the charging, the soft switching dc-dc converters are implemented to maintain low switching losses and to achieve high-efficiency operation. This paper reviews the non-isolated, soft switching dc-dc power converters for EV charging application. For this purpose, different types of soft switching topologies, namely the snubber, the series resonant, the shunt resonant and the pulse frequency modulated converters are investigated. The advantages and the disadvantages associated with these converters are highlighted. Furthermore, to perform a comparative evaluation, the topologies are simulated in a standard simulation platform. Consequently, the relative standing of the converters depending on several parameters, i.e. the component count, the output voltage and current ripple, the soft switching range, and the power losses are established. Finally, based on these results, the optimum applicability of the converters in the EV charging application is determined. GUB JOURNAL OF SCIENCE AND ENGINEERING, Vol 6(1), Dec 2019 P 60-74


2016 ◽  
Vol 65 (12) ◽  
pp. 2225-2231
Author(s):  
Ngoc-Thinh Quach ◽  
Sang Heon Chae ◽  
Eel-Hwan Kim ◽  
Seung-Yong Yang ◽  
Chang-Jin Boo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document