The Existence of Solutions for an Initial Value Problem of Caputo-katugampola Fractional Differential Equations

Author(s):  
Truong Vinh An
Author(s):  
Ashwini D. Mali ◽  
Kishor D. Kucche ◽  
José Vanterler da Costa Sousa

Abstract This paper is dedicated to investigating the existence of solutions to the initial value problem (IVP) for a coupled system of Ψ-Hilfer hybrid fractional differential equations (FDEs) and boundary value problem (BVP) for a coupled system of Ψ-Hilfer hybrid FDEs. Analysis of the current paper depends on the two fixed point theorems involving three operators characterized on Banach algebra. In the view of an application, we provided useful examples to exhibit the effectiveness of our achieved results.


Axioms ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 57 ◽  
Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Mouffak Benchohra ◽  
Alberto Cabada

In this article, we discuss the existence and uniqueness of extremal solutions for nonlinear initial value problems of fractional differential equations involving the ψ -Caputo derivative. Moreover, some uniqueness results are obtained. Our results rely on the standard tools of functional analysis. More precisely we apply the monotone iterative technique combined with the method of upper and lower solutions to establish sufficient conditions for existence as well as the uniqueness of extremal solutions to the initial value problem. An illustrative example is presented to point out the applicability of our main results.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 286 ◽  
Author(s):  
Shuqin Zhang ◽  
Lei Hu

The semigroup properties of the Riemann–Liouville fractional integral have played a key role in dealing with the existence of solutions to differential equations of fractional order. Based on some results of some experts’, we know that the Riemann–Liouville variable order fractional integral does not have semigroup property, thus the transform between the variable order fractional integral and derivative is not clear. These judgments bring us extreme difficulties in considering the existence of solutions of variable order fractional differential equations. In this work, we will introduce the concept of approximate solution to an initial value problem for differential equations of variable order involving the derivative argument on half-axis. Then, by our discussion and analysis, we investigate the unique existence of approximate solution to this initial value problem for differential equation of variable order involving the derivative argument on half-axis. Finally, we give examples to illustrate our results.


Author(s):  
Tiberiu Trif

AbstractThe purpose of the paper is to investigate the global existence of solutions to initial value problems for nonlinear fractional differential equations on the semi-axis. More precisely, it deals with the initial value problem (*)$\left\{ \begin{gathered} D_{0 + }^\alpha x(t) = f(t,x(t)),t \in [0,\infty ], \hfill \\ \lim _{t \to 0 + } t^{1 - \alpha } x(t) = x_0 , \hfill \\ \end{gathered} \right. $ where 0 < α < 1, D 0+α denotes the Riemann-Liouville fractional derivative of order α, and f: (0,∞) × ℝ → ℝ is a continuous function. Unlike all the previous papers dealing with the problem of existence of solutions to (*), this problem is solved here by constructing a special locally convex space which is metrizable and complete. Then Schauder’s fixed point theorem enables to provide sufficient conditions on f, ensuring that (*) possesses at least one solution. The growth conditions imposed to f are weaker than other similar conditions already used in the literature.


Sign in / Sign up

Export Citation Format

Share Document