extremal solutions
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 33)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 40 ◽  
pp. 1-8
Author(s):  
Makkia Dammak ◽  
Majdi El Ghord ◽  
Saber Ali Kharrati

Abstract: In this note, we deal with the Helmholtz equation −∆u+cu = λf(u) with Dirichlet boundary condition in a smooth bounded domain Ω of R n , n > 1. The nonlinearity is superlinear that is limt−→∞ f(t) t = ∞ and f is a positive, convexe and C 2 function defined on [0,∞). We establish existence of regular solutions for λ small enough and the bifurcation phenomena. We prove the existence of critical value λ ∗ such that the problem does not have solution for λ > λ∗ even in the weak sense. We also prove the existence of a type of stable solutions u ∗ called extremal solutions. We prove that for f(t) = e t , Ω = B1 and n ≤ 9, u ∗ is regular.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhongqi Peng ◽  
Yuan Li ◽  
Qi Zhang ◽  
Yimin Xue

The Caputo conformable derivative is a new Caputo-type fractional differential operator generated by conformable derivatives. In this paper, using Banach fixed point theorem, we obtain the uniqueness of the solution of nonlinear and linear Cauchy problem with the conformable derivatives in the Caputo setting, respectively. We also establish two comparison principles and prove the extremal solutions for nonlinear fractional p -Laplacian differential system with Caputo conformable derivatives by utilizing the monotone iterative technique. An example is given to verify the validity of the results.


2021 ◽  
Vol 19 (1) ◽  
pp. 612-623
Author(s):  
Bing Hu ◽  
◽  
Zhizhi Wang ◽  
Minbo Xu ◽  
Dingjiang Wang

<abstract><p>In this paper, we obtain solution sequences converging uniformly and quadratically to extremal solutions of an impulsive integro-differential system with delay. The main tools are the method of quasilinearization and the monotone iterative. The results obtained are more general and applicable than previous studies, especially the quadratic convergence of the solution for a class of integro-differential equations, which have been involved little by now.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document