LinkTouch: A wearable haptic device with five-bar linkage mechanism for presentation of two-DOF force feedback at the fingerpad

Author(s):  
Dzmitry Tsetserukou ◽  
Shotaro Hosokawa ◽  
Kazuhiko Terashima
2021 ◽  
pp. 1-63
Author(s):  
Jin Lixing ◽  
Duan Xingguang ◽  
Li Changsheng ◽  
Shi Qingxin ◽  
Wen Hao ◽  
...  

Abstract This paper presents a novel parallel architecture with seven active degrees of freedom (DOFs) for general-purpose haptic devices. The prime features of the proposed mechanism are partial decoupling, large dexterous working area, and fixed actuators. The detailed processes of design, modeling, and optimization are introduced and the performance is simulated. After that, a mechanical prototype is fabricated and tested. Results of the simulations and experiments reveal that the proposed mechanism possesses excellent performances on motion flexibility and force feedback. This paper aims to provide a remarkable solution of the general-purpose haptic device for teleoperation systems with uncertain mission in complex applications.


Author(s):  
Mark J. Lelieveld ◽  
Takashi Maeno ◽  
Tetsuo Tomiyama

This research aims to develop a portable haptic master hand with 20 degrees of freedom (DOF). Master hands are used as haptic interfaces in master-slave systems. A master-slave system consists of a haptic interface that communicates with a virtual world or an end-effector for tele-operation, such as a robot hand. The thumb and fingers are usually modeled as a serial linkage mechanism with 4 DOF. So far, no 20 DOF master hands have been developed that can exert perpendicular forces on the finger phalanges during the complete flexion and extension motion. In this paper, the design and development of two concepts of a portable 4 DOF haptic interface for the index finger is presented. Concept A is a statically balanced haptic interface with a rolling-link mechanism (RLM) and an integrated constant torque spring per DOF for perpendicular and active force feedback. Concept B utilizes a mechanical tape brake at the RLM for passive force feedback. The systematic Pahl and Beitz design approach is used as an iterative design method.


2014 ◽  
Vol 8 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Ryoya Kamata ◽  
◽  
Ryosuke Tamura ◽  
Satoshi Niitsu ◽  
Hiroshi Kawaharada ◽  
...  

This paper describes a remote controlled assembly using a haptic device. Most haptic devices have six Degrees Of Freedom (DOFs) for a higher sense of reality. However, for assembly operation, the simultaneous motion of parts with only one or two DOFs is required, and force feedback to operators is used only to maintain contact and detect collisions among parts. This leads to the possibility of assembly operations using a haptic device with a small number of DOFs. In this paper, we propose virtual planes to perform remote control of a 6DOF assembly by way of 1DOF user operations. Virtual planes separate the DOFs for user operation and for automatically generated motions that complement the user operation DOF in each assembly operation. A prototype system was developed with a 6DOF manipulator and camera. The system allows an operator to place virtual planes in any position and orientation using a camera image of the workspace. The experiment results showed the effectiveness of the method for remote controlled assembly without geometry information on the parts.


Author(s):  
Hugo I. Medellín-Castillo ◽  
Germánico González-Badillo ◽  
Eder Govea ◽  
Raquel Espinosa-Castañeda ◽  
Enrique Gallegos

The technological growth in the last years have conducted to the development of virtual reality (VR) systems able to immerse the user into a three-dimensional (3D) virtual environment where the user can interact in real time with virtual objects. This interaction is mainly based on visualizing the virtual environment and objects. However, with the recent beginning of haptic systems, the interaction with the virtual world has been extended to also feel, touch and manipulate virtual objects. Virtual reality has been successfully used in the development of applications in different scientific areas ranging from basic sciences, social science, education and entertainment. On the other hand, the use of haptics has increased in the last decade in domains from sciences and engineering to art and entertainment. Despite many developments, there is still relatively little knowledge about the confluence of software, enabling hardware, visual and haptic representations, to enable the conditions that best provide for an immersive sensory environment to convey information about a particular subject domain. In this paper, the state of the art of the research work regarding virtual reality and haptic technologies carried out by the authors in the last years is presented. The aim is to evidence the potential use of these technologies to develop usable systems for analysis and simulation in different areas of knowledge. The development of three different systems in the areas of engineering, medicine and art is presented. In the area of engineering, a system for the planning, evaluation and training of assembly and manufacturing tasks has been developed. The system, named as HAMS (Haptic Assembly and Manufacturing System), is able to simulate assembly tasks of complex components with force feedback provided by the haptic device. On the other hand, in the area of medicine, a surgical simulator for planning and training orthognathic surgeries has been developed. The system, named as VOSS (Virtual Osteotomy Simulator System), allows the realization of virtual osteotomies with force feedback. Finally, in the area of art, an interactive cinema system for blind people has been developed. The system is able to play a 3D virtual movie for the blind user to listen to and touch by means of the haptic device. The development of these applications and the results obtained from these developments are presented and discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document