constant torque
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 52)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Ekim Onur Orhan ◽  
Duygu Bahadır ◽  
Ozgur Irmak

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8138
Author(s):  
Faa-Jeng Lin ◽  
Syuan-Yi Chen ◽  
Wei-Ting Lin ◽  
Chih-Wei Liu

An online parameter estimation methodology using the d-axis current injection, which can estimate the distorted voltage of the current-controlled voltage source inverter (CCVSI), the varying dq-axis inductances, and the rotor flux, is proposed in this study for interior permanent magnet synchronous motor (IPMSM) drives in the constant torque region. First, a d-axis current injection-based parameter estimation methodology considering the nonlinearity of a CCVSI is proposed. Then, during current injection, a simple linear model is developed to model the cross- and self-saturation of the dq-axis inductances. Since the d-axis unsaturated inductance is difficult to obtain by merely using the recursive least square (RLS) method, a novel tuning method for the d-axis unsaturated inductance is proposed by using the theory of the maximum torque per ampere (MTPA) with the combination of the RLS method. Moreover, to improve the bandwidth of the current loop, an intelligent proportional-integral-derivative (PID) neural network controller with improved online learning algorithm is adopted to replace the traditional PI controller. The estimated the dq-axis inductances and the rotor flux are adopted in the decoupled control of the current loops. Finally, the experimental results at various operating conditions of the IPMSM in the constant torque region are given.


Author(s):  
Kensuke Oba ◽  
Mina Samukawa ◽  
Yosuke Abe ◽  
Yukino Suzuki ◽  
Miho Komatsuzaki ◽  
...  

The different effects of intermittent and continuous stretching on the mechanical properties of the musculotendinous complex have been unclear. This study aimed to compare the effects of intermittent and continuous stretching for the same duration on the range of motion (ROM), passive resistive torque (PRT), and musculotendinous stiffness (MTS) of ankle plantar flexors. Eighteen healthy young men participated in the study. Intermittent (four sets × 30 s) and continuous stretching (one set × 120 s) were performed in random orders on two separate days. Both stretching protocols were conducted using a dynamometer with a constant torque applied. ROM and PRT were determined using a dynamometer, and MTS was calculated using the torque–angle relationship measured before and after stretching. Two-way repeated measures analysis of variance was performed for all parameters. Both intermittent and continuous stretching significantly increased ROM and decreased PRT and MTS (p < 0.05). Intermittent stretching led to greater changes in ROM and PRT than continuous stretching. However, the reduction in MTS did not differ between the two conditions. These results suggest that intermittent stretching is more effective in increasing ROM and changing the mechanical properties of the musculotendinous complex.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5692
Author(s):  
Andriy Chaban ◽  
Zbigniew Łukasik ◽  
Andrzej Popenda ◽  
Andrzej Szafraniec

Beginning with the classic methods, a mathematical model of an electromechanical system is developed that consists of a deep bar cage induction motor that, via a complex motion transmission with distributed mechanical parameters, drives a working machine, loading the drive system with a constant torque. The electromagnetic field theory serves to create the motor model, which allows addressing the displacement of current in the rotor cage bars. Ordinary and partial differential equations are used to describe the electromechanical processes of energy conversion in the motor. The complex transmission of the drive motion consists of a long shaft with variable geometry cardan joints mounted on its ends. Non-linear electromechanical differential equations are presented as a system of ordinary differential equations combined with a mixed problem of Dirichlet first-type and Poincaré third-type boundary conditions. This system of equations is integrated by discretising partial derivatives by means of the straight-line methods and successive integration as a function of time using the Runge–Kutta fourth-order method. Starting from there, complicated transient processes in the drive system are analysed. Results of computer simulations are presented in the graphic form, which is analysed.


Author(s):  
◽  
Andi Setiawan ◽  
Bayu Rudiyanto ◽  
Satryo Budi Utomo ◽  
Muji Muji Setiyo ◽  
...  

Brushless DC (BLDC) motors are the most popular motors used by the industry because they are easy to control. BLDC motors are generally controlled by artificial controls such as Fuzzy Logic Controller (FLC), Artificial Neural Network (ANN), and Adaptive Neuro-Fuzzy Inference System (ANFIS). However, the performance of the BLDC control system in previous studies was compared separately with their respective parameters, making it difficult to evaluate comprehensively. Therefore, in order to investigate the characteristic performance of Fuzzy, ANN, and ANFIS, this article provides a comparison of these artificial controls. Two scenarios of the dynamic tests are conducted to investigate control performance under constant torque-various speed and constant speed-various torque. By dynamic testing, characteristics of Fuzzy, ANN, and ANFIS can be observed as real applications. The testing parameters are: Settling Time, Overshoot and Overdamp (in the graph and average value), and then statistic performance are: Integral Square Error (ISE), Integral Absolute Error (IAE), Integral Time Absolute Error (ITAE), and Mean Absolute Error (MAE). The test result in scenario 1 showed that the ANN has a better performance compared to other controllers with the MAE, IAE, ITAE, and ISE value of 31.3003; 105.6280; 208.0630; and 5,7289 e4, respectively. However, in scenario 2, ANN only has a better performance compared to other controllers on just a few parameters. In scenario 2, ANN is indeed able to maintain speed but it has a more ripple value than ANFIS. Even so, the ripple that occurs in ANN does not have too much value compared to the setpoint. Therefore, the MAE value of the ANN is smaller than the ANFIS (18.8937 of ANN and 28.4685 of ANFIS).


2021 ◽  
Author(s):  
Michał Biały ◽  
Łukasz Grabowski ◽  
Bartłomiej Skórzyński ◽  
Grzegorz Barański ◽  
Adam Majczak

The paper presents the results of the bench tests to measure mechanical vibrations of a new aircraft opposed piston engine with reciprocating pistons. The PLZ-100 engine is a three-cylinder, six-piston, two-shaft drive unit with a two-stroke diesel cycle. This type of engine is dedicated for powering light aircraft, e.g. autogyros. The tests were carried out on a test bench at the Lublin University of Technology. The engine was loaded with constant torque, for several fixed values of rotational speed of a crankshaft. The angle of the start of diesel injection was changed for each of the rotational speeds. The mechanical vibrations that accompanied the operation of this drive unit were recorded with three measurement transducers and a National Instruments conditioning system. Each of the transducers was mounted on a different axis of the engine. The signals were analyzed from their courses with the DIAdem software. The results were the courses of effective speed and vibration acceleration to conduct a vibration-acoustic evaluation of the PLZ-100, detect and prevent various types of defects or failures.


MIND Journal ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 73-88
Author(s):  
SENI NURJANAH ◽  
NASRUN HARIYANTO ◽  
SABAT ANWARI

AbstrakMesin CNC digunakan untuk membuat kerangka pesawat terbang, motor induksi sebagai tenaga penggerak diatur kecepatan putarnya untuk menghasilkan torka sesuai kebutuhan dikendalikan oleh VSD. Pengendalian VSD pada mesin CNC menggunakan software PSIM untuk mengetahui karakteristik mesin CNC dengan tegangan dan frekuensi yang divariasikan agar menghasilkan torka konstan. Analisis karakteristik motor induksi digunakan rangkaian pengganti dan perhitungan matematis. Untuk mengetahui rentan kerja mesin CNC maka arus starting 61,83Ampere; torka starting 23,28N.m; torka maksismum 14,1N.m; putaran sinkron 1500rpm. Pengolahan data dilakukan secara matematis, pada pengukuran mendapatkan torka 35N.m sedangkan simulasi beban 30% menghasilkan torka 4.2N.m; beban 60% menghasilkan torka 8.3N.m; beban 90% menghasilkan torka 12.5N.m. Dapat disimpulkan kendali V/f menghasilkan torka konstan sepanjang pengaturan kecepatan putar. Kata kunci: PSIM, Variable Speed Drive, Torka Motor Induksi, Mesin CNCAbstractCNC machines are used to make aircraft frames, the induction motor as the driving force is set to rotate its speed to produce torque as needed, controlled by a variable speed drive. VSD control on CNC machines uses PSIM software to determine the characteristics of CNC machines with varied voltages and frequencies to produce constant torque. Analysis of the characteristics of the induction motor used a replacement circuit and mathematical calculations to determine the working range of the CNC machine. Then the starting current is 61.83Amperes; starting torque 23.28N.m; maximum torque 14.1N.m; synchronous speed 1500rpm. Data processing is done mathematically, the measurement gets 35N.m of torque while the 30% load simulation produces 4.2N.m of torque; 60% load produces 8.3N.m torque; 90% load produces 12.5N.m of torque. It can be concluded that the V/f control produces constant torque throughout the rotational speed setting.Keywords: PSIM, Variable Speed Drive, Induction Motor Torque, CNC Machine


2021 ◽  
Vol 12 (1) ◽  
pp. 1-9
Author(s):  
Pudji Irasari ◽  
Ketut Wirtayasa ◽  
Puji Widiyanto ◽  
Muhammad Fathul Hikmawan ◽  
Muhammad Kasim

Permanent magnet motors (PMMs) are widely used in electric vehicles because of their benefits. Based on the permanent magnet topologies on the rotor, PMMs are classified into three types: surface mounted PMM, inset PMM, and interior PMM. This paper discusses a comparison of the characteristics of interior and inset types of PMMs for electric vehicle applications. The study aims to find out the effect of the rotor construction on the magnetic characteristics, torque-speed characteristics, and cogging torque. Simulations were carried out analytically and numerically using the FEMM 4.2 software. The simulation results at the base speed show that the interior PMM generates a higher torque but with a lower rotation, namely 56.47 Nm and 3162 rpm, respectively, while the inset PMM produces higher rotation 4200 rpm but lower output torque of 46.01 Nm. However, with a higher saliency ratio, the interior PMM produces higher maximum torque and speed at both constant torque and field weakening regions than the PMM inset, which is 92.87 Nm and 6310 rpm, consecutively. In terms of cogging torque, the interior PMM raises it slightly higher (2.90 Nm) than the inset PMM (1.93 Nm). The results conclude that, in general, the interior PMM shows better performance in all studied regions and is preferable for electric vehicle applications.


Sign in / Sign up

Export Citation Format

Share Document