2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Salabat Khan ◽  
Zijian Zhang ◽  
Liehuang Zhu ◽  
Meng Li ◽  
Qamas Gul Khan Safi ◽  
...  

Current Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is a vast and complex system; it consists of processes, policies, and entities that are responsible for a secure certificate management process. Among them, Certificate Authority (CA) is the central and most trusted entity. However, recent compromises of CA result in the desire for some other secure and transparent alternative approaches. To distribute the trust and mitigate the threats and security issues of current PKI, publicly verifiable log-based approaches have been proposed. However, still, these schemes have vulnerabilities and inefficiency problems due to lack of specifying proper monitoring, data structure, and extra latency. We propose Accountable and Transparent TLS Certificate Management: an alternate Public-Key Infrastructure (PKI) with verifiable trusted parties (ATCM) that makes certificate management phases; certificate issuance, registration, revocation, and validation publicly verifiable. It also guarantees strong security by preventing man-in-middle-attack (MitM) when at least one entity is trusted out of all entities taking part in the protocol signing and verification. Accountable and Transparent TLS Certificate Management: an alternate Public-Key Infrastructure (PKI) with verifiable trusted parties (ATCM) can handle CA hierarchy and introduces an improved revocation system and revocation policy. We have compared our performance results with state-of-the-art log-based protocols. The performance results and evaluations show that it is feasible for practical use. Moreover, we have performed formal verification of our proposed protocol to verify its core security properties using Tamarin Prover.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shimao Yao ◽  
Ravi Sankar ◽  
In-Ho Ra

In order to solve the challenges of user data security in the cloud computing (storage) environment, many encryption solutions with different features have been presented. Among them, proxy reencryption (PRE) based on public-key infrastructure (PKI) is a promising technology for secure cloud sharing. And identity-based proxy reencryption (IBPRE), which uses identity as the public key, eliminates burdensome certificate management and is, therefore, more preferable. However, most of the current IBPRE schemes only focus on the processing of data sharing while overlooking the functions of authorization revocation and ciphertext update, which are more closely related to the security of data itself. Moreover, the few existing schemes that involve ciphertext update turn out to be impractical because the length of ciphertext increases with the reencryption of ciphertext. In this paper, an improved IBPRE scheme, which provides improvements on the inadequacies of the scheme proposed by Ateniese et al. especially in terms of collusion safety and ciphertext evolution, is proposed. To the best of our knowledge, this is a practical IBPRE scheme integrating the functions of access authorization, delegation revocation, ciphertext update, reauthorization, and conditional reservation delegation. The proposed technique has high practicability in the scenario where a large number of ciphertexts need to be updated synchronously. Lastly, the comparative analysis and simulation results show that the two reencryption algorithms in the proposed scheme have the shortest computing time than other schemes.


Sign in / Sign up

Export Citation Format

Share Document