Real-time temperature monitoring and estimation of thermal damage in pancreas undergoing magnetic resonance-guided laser ablation: First in vivo study

Author(s):  
P. Saccomandi ◽  
C. Giraudeau ◽  
F. Marchegiani ◽  
F. M. Di Matteo ◽  
E. Schena ◽  
...  
2016 ◽  
Vol 41 (10) ◽  
pp. 1973-1979 ◽  
Author(s):  
Zhu Wang ◽  
Wei Wang ◽  
Guang-Jian Liu ◽  
Zheng Yang ◽  
Li-Da Chen ◽  
...  

2004 ◽  
Vol 146 (2) ◽  
pp. 161-164 ◽  
Author(s):  
C. Pollo ◽  
J.-G. Villemure ◽  
F. Vingerhoets ◽  
J. Ghika ◽  
P. Maeder ◽  
...  

2015 ◽  
Vol 12 (1) ◽  
pp. 39-48 ◽  
Author(s):  
D Jay McCracken ◽  
Jon T Willie ◽  
Brad A Fernald ◽  
Amit M Saindane ◽  
Daniel L Drane ◽  
...  

Abstract BACKGROUND Surgery is indicated for cerebral cavernous malformations (CCMs) that cause medically refractory epilepsy. Real-time magnetic resonance thermography (MRT)-guided stereotactic laser ablation (SLA) is a minimally invasive approach to treating focal brain lesions. SLA of CCM has not previously been described. OBJECTIVE To describe MRT-guided SLA, a novel approach to treating CCM-related epilepsy, with respect to feasibility, safety, imaging, and seizure control in 5 consecutive patients. METHODS Five patients with medically refractory epilepsy undergoing standard presurgical evaluation were found to have corresponding lesions fulfilling imaging characteristics of CCM and were prospectively enrolled. Each underwent stereotactic placement of a saline-cooled cannula containing an optical fiber to deliver 980-nm diode laser energy via twist drill craniostomy. MR anatomic imaging was used to evaluate targeting before ablation. MR imaging provided evaluation of targeting and near real-time feedback regarding the extent of tissue thermocoagulation. Patients maintained seizure diaries, and remote imaging (6-21 months postablation) was obtained in all patients. RESULTS Imaging revealed no evidence of acute hemorrhage following fiber placement within presumed CCM. MRT during treatment and immediate postprocedure imaging confirmed the desired extent of ablation. We identified no adverse events or neurological deficits. Four of 5 (80%) patients achieved freedom from disabling seizures after SLA alone (Engel class 1 outcome), with follow-up ranging 12 to 28 months. Reimaging of all subjects (6-21 months) indicated lesion diminution with surrounding liquefactive necrosis, consistent with the surgical goal of extended lesionotomy. CONCLUSION Minimally invasive MRT-guided SLA of epileptogenic CCM is a potentially safe and effective alternative to open resection. Additional experience and longer follow-up are needed.


2009 ◽  
Vol 4 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Oliver T. Bruns ◽  
Harald Ittrich ◽  
Kersten Peldschus ◽  
Michael G. Kaul ◽  
Ulrich I. Tromsdorf ◽  
...  

2016 ◽  
Vol 311 (2) ◽  
pp. L208-L218 ◽  
Author(s):  
Dean O. Kuethe ◽  
Piotr T. Filipczak ◽  
Jeremy M. Hix ◽  
Andrew P. Gigliotti ◽  
Raúl San José Estépar ◽  
...  

Animal models play a critical role in the study of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI). One limitation has been the lack of a suitable method for serial assessment of acute lung injury (ALI) in vivo. In this study, we demonstrate the sensitivity of magnetic resonance imaging (MRI) to assess ALI in real time in rat models of VILI. Sprague-Dawley rats were untreated or treated with intratracheal lipopolysaccharide or PBS. After 48 h, animals were mechanically ventilated for up to 15 h to induce VILI. Free induction decay (FID)-projection images were made hourly. Image data were collected continuously for 30 min and divided into 13 phases of the ventilatory cycle to make cinematic images. Interleaved measurements of respiratory mechanics were performed using a flexiVent ventilator. The degree of lung infiltration was quantified in serial images throughout the progression or resolution of VILI. MRI detected VILI significantly earlier (3.8 ± 1.6 h) than it was detected by altered lung mechanics (9.5 ± 3.9 h, P = 0.0156). Animals with VILI had a significant increase in the Index of Infiltration ( P = 0.0027), and early regional lung infiltrates detected by MRI correlated with edema and inflammatory lung injury on histopathology. We were also able to visualize and quantify regression of VILI in real time upon institution of protective mechanical ventilation. Magnetic resonance lung imaging can be utilized to investigate mechanisms underlying the development and propagation of ALI, and to test the therapeutic effects of new treatments and ventilator strategies on the resolution of ALI.


2013 ◽  
Vol 14 (3) ◽  
pp. 416 ◽  
Author(s):  
Vanessa Berger-Kulemann ◽  
Henrik Einspieler ◽  
Nilouparak Hachemian ◽  
Daniela Prayer ◽  
Siegfried Trattnig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document