Modeling and analysis of a feedback control strategy for three-phase voltage-source utility interface systems

Author(s):  
N. Abdel-Rahim ◽  
J.E. Quaicoe
Author(s):  
Abdelhafid Yahya ◽  
Hassan El Fadil ◽  
Mustapha Oulcaid

<span lang="EN-GB">This paper addresses the problem of controlling three-phase grid connected PV system involving a PV arrays, a voltage source inverter, a grid filter and an electric grid. This paper presents three main control objectives: i) ensuring the Maximum power point tracking (MPPT) in the side of PV panels, ii) guaranteeing a power factor unit in the side of the grid, iii) and ensuring the asymptotic stability of the closed loop system. Interestingly, the present study features the achievement of the above energetic goal without resorting to sensors of currents of the grid. To this end, an output-feedback control strategy combining a state observer and a nonlinear control laws is developed. The proposed output-feedback control strategy is backed by a formal analysis showing that all control objectives are actually achieved</span>


2020 ◽  
Vol 10 (5) ◽  
pp. 1703 ◽  
Author(s):  
Zhao Han ◽  
Xiaoli Wang ◽  
Baochen Jiang ◽  
Jingru Chen

In microgrids, paralleled converters can increase the system capacity and conversion efficiency but also generate zero-sequence circulating current, which will distort the AC-side current and increase power losses. Studies have shown that, for two paralleled three-phase voltage-source pulse width modulation (PWM) converters with common DC bus controlled by space vector PWM, the zero-sequence circulating current is mainly related to the difference of the zero-sequence duty ratio between the converters. Therefore, based on the traditional control ideal of zero-vector action time adjustment, this paper proposes a zero-sequence circulating current suppression strategy using proportional–integral quasi-resonant control and feedforward compensation control. Firstly, the dual-loop decoupled control was utilized in a single converter. Then, in order to reduce the amplitude and main harmonic components of the circulating current, a zero-vector duty ratio adjusting factor was initially generated by a proportional–integral quasi-resonant controller. Finally, to eliminate the difference of zero-sequence duty ratio between the converters, the adjusting factor was corrected by a feedforward compensation link. The simulation mode of Matlab/Simulink was constructed for the paralleled converters based on the proposed control strategy. The results verify that this strategy can effectively suppress the zero-sequence circulating current and improve power quality.


2012 ◽  
Vol 24 ◽  
pp. 997-1005 ◽  
Author(s):  
Jiuhe Wang ◽  
Hongren Yin ◽  
Shengsheng Xu

2013 ◽  
Vol 336-338 ◽  
pp. 450-453
Author(s):  
Jian Ying Li ◽  
Wei Dong Yang ◽  
Ni Na Ma

In view of the fact that active power and reactive power have coupling relation, a novel vector decoupling control strategy is presented for three-phase voltage source PWM rectifier. In the paper, the power control mathematical mode of the PWM rectifier is deduced based on the mathematical model of rectifier in synchronous d-q rotating coordinates, and a new voltage feed forward decoupling compensation control strategy is proposed. The simulation results show that the voltage and current of the three-phase PWM rectifier have better respond preference, the current aberrance is smaller and the voltage is steady under the control strategy. The PWM rectifier can implement PWM commute with unity power factor, but also feed back the energy to AC side with unity power factor.


2016 ◽  
Vol 39 (7) ◽  
pp. 976-986
Author(s):  
Meng Wang ◽  
Yanyan Shi ◽  
Zhen Qi ◽  
Minghui Shen

To improve the performance of three-phase voltage source pulse-width modulated (PWM) rectifiers (VSR) under unbalanced grid voltage conditions, a fixed-frequency current predictive control (CPC) strategy is presented. Instantaneous power of the three-phase VSR is analysed in a two-phase stationary frame. The calculation method for the reference current is improved to achieve the power stability at the AC side of the rectifier. Based on the current predictive model, the optimal duration of the voltage vectors is computed under the restricted condition of minimizing current error at α- and β-axes in fixed intervals. The control system is free of synchronous rotation coordinate transformation, and avoids positive and negative sequence decomposition, which simplifies the calculation. The simulation and experimental results show that the proposed control strategy is able to eliminate the AC current distortion effectively and depress DC link voltage fluctuation under unbalanced grid voltage. Furthermore, the control strategy has faster dynamic response ability, enhancing the control performance of the three-phase VSR system.


Sign in / Sign up

Export Citation Format

Share Document